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a b s t r a c t 

When tackling high dimensionality in data mining, online feature selection which deals with features 
flowing in one by one over time, presents more advantages than traditional feature selection methods. 
However, in real-world applications, such as fraud detection and medical diagnosis, the data is high- 
dimensional and highly class imbalanced, namely there are many more instances of some classes than 
others. In such cases of class imbalance, existing online feature selection algorithms usually ignore the 
small classes which can be important in these applications. It is hence a challenge to learn from high- 
dimensional and class imbalanced data in an online manner. Motivated by this, we first formalize the 
problem of online streaming feature selection for class imbalanced data, and then present an efficient 
online feature selection framework regarding the dependency between condition features and decision 
classes. Meanwhile, we propose a new algorithm of Online Feature Selection based on the Dependency 
in K nearest neighbors, called K-OFSD. In terms of Neighborhood Rough Set theory, K-OFSD uses the in- 
formation of nearest neighbors to select relevant features which can get higher separability between the 
majority class and the minority class. Finally, experimental studies on seven high-dimensional and class 
imbalanced data sets show that our algorithm can achieve better performance than traditional feature 
selection methods with the same numbers of features and state-of-the-art online streaming feature se- 
lection algorithms in an online manner. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Feature selection aims to select a subset of features, which can 
be used to derive a mapping function from samples to classes 
that is “as good as possible” according to some criterion [1] . There 
are many representative algorithms for traditional feature selec- 
tion, such as ReliefF [2] , Fisher Score [3] , MI(Mutual Informa- 
tion) [4] , mRMR (minimal Redundancy and Maximal Relevance) [5] , 
Laplacian score [6,7] , LASSO (least absolute shrinkage and selec- 
tion operator) [8] and so on [9] . With the increasing of the scale 
of data, traditional batch feature selection can not meet the effi- 
ciency demand any more. For instance, the Web Spam Corpus 2011, 
a collection which has approximately 330,0 0 0 spam web pages 
and 16,0 0 0,0 0 0 features (attributes) [10] . Besides, all aforemen- 
tioned approaches assume that all candidate features are avail- 
able before learning takes place. However, in many real-world 
applications, features are generated dynamically, and arrive one 
by one over time. For example, in image analysis [11] , multi- 
ple descriptors are extracted dynamically to capture various visual 
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information of images, including HOG (Histogram of Oriented Gra- 
dients), color histogram and SIFT (Scale Invariant Feature Trans- 
form). Each of these descriptors is generated independently and 
image features are often expensive to generate and store and 
therefore may exist in a streaming format. Another example is the 
Mars crater detection from high resolution planetary images [12] . 
Tens of thousands of texture-based features, in different scales and 
different resolutions, can potentially be generated for high resolu- 
tion planetary images. It is infeasible to acquire the entire feature 
set which means to have a near global coverage of the Martian sur- 
face. In order to deal with this challenge, many online streaming 
feature selection methods have been proposed [13] . 

Online feature selection with streaming features has attracted 
much attention in recent years and played a critical role in deal- 
ing with extremely high-dimensional problems [14–18] . Stream- 
ing features are defined as features that flow in one by one over 
time whereas the number of training examples remains fixed [15] . 
More specifically, Perkins and Theiler [19] considered the prob- 
lem of online feature selection and proposed the Grafting algo- 
rithm based on a stagewise gradient descent approach. Grafting 
treats feature selection as an integral part of learning a predic- 
tor within a regularized framework. Zhou et al. [20] proposed two 
algorithms of information-investing and alpha-investing, based on 
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streamwise regression for online feature selection. Alpha-investing 
does not need a global model and it is one of the penalized like- 
lihood ratio methods. Wu et al. [15] presented an online stream- 
ing feature selection framework with two algorithms called OSFS 
(Online Streaming Feature Selection) and fast-OSFS. OSFS contains 
two major steps, including online relevance analysis and online re- 
dundancy analysis. Yu et al. [18] proposed the SAOLA approach (a 
Scalable and Accurate Online feature selection Approach) for high 
dimensional data. SAOLA employs novel online pairwise compari- 
son techniques and maintains a parsimonious model over time in 
an online manner. Eskandari et al. [21] proposed a Rough Set based 
method for online streaming feature selection. The proposed al- 
gorithm uses classical significance analysis concepts in Rough Set 
theory to control an unknown feature space in online streaming 
feature selection problems. 

Meanwhile, in many real-world applications, such as fraud and 
intrusion detection, text classification and medical diagnosis, in ad- 
dition to high dimensionality, class imbalance is also very common 
[22,23] . For example, the number of fraud users is obviously much 
lower than that of normal users. In fact, the ratio of the small to 
the large classes can be drastic such as 1 to 100, 1 to 1,0 0 0, or 1 
to 10 0,0 0 0 [24,25] . All these online streaming feature selection ap- 
proaches mentioned above were proposed to deal with data sets 
with normal class distributions, thus, they cannot handle the class 
imbalance data effectively. It is hence a challenge for existing on- 
line streaming feature selection approaches. 

To handle the issue of class imbalance in data sets, existing so- 
lutions mainly focus on two levels: the data level and the algo- 
rithmic level [26] . The former includes many different forms of 
re-sampling and the latter involves adjusting the costs of vari- 
ous classes, the probabilistic estimation and the decision thresh- 
old. In recent years, one class learning and feature selection for 
class imbalance data have also attracted much attention [26] . Fea- 
ture selection can be very helpful for imbalanced data sets [27] . 
The aim of feature selection for imbalance data is to select fea- 
tures that can get higher separability between the majority class 
and the minority class. Existing works in feature selection for im- 
balance data are mostly batch algorithms [27–31] . For example, 
Zheng et al. [28] proposed a feature selection framework which 
selects positive features and negative features separately, and then 
explicitly combines them to improve the classification accuracy in 
the handling of class imbalance data. Hulse et al. [27] gave de- 
tailed comparisons of six commonly-used filters and three filters 
using classifier performance metrics on high-dimensional imbal- 
ance data. The biggest finding from this paper is that feature selec- 
tion is beneficial to handle most high-dimensional imbalanced data 
sets. Wasikowski et al. [30] presented a first systematic compari- 
son of three types of methods developed for imbalanced data clas- 
sification problems (re-sampling, new algorithms and feature se- 
lection) and of seven feature selection metrics evaluated on small 
sample data sets from different applications. Results showed that 
the signal-to-noise correlation coefficient (S2N) and Feature As- 
sessment by Sliding Thresholds (FAST) are great candidates for fea- 
ture selection in most imbalanced applications, especially in the 
case of selecting a very small number of features. Maldonado et al. 
[29] proposed a backward elimination approach based on succes- 
sive holdout steps, whose contribution measure is based on a bal- 
anced loss function obtained over an independent subset. Never- 
theless, all aforementioned algorithms were proposed for tradi- 
tional feature selection. To the best of our knowledge, there is 
no work relevant to online streaming feature selection for high- 
dimensional class imbalance data so far. 

Rough set theory, proposed by Pawlak, has been proven to be 
an effective tool for feature selection, rule extraction and knowl- 
edge discovery [32] . Pawlak’s rough sets were originally proposed 
to deal with categorical data. There are many works of using rough 

sets for attribute reduction and feature selection [33–36] . However, 
in real-world applications, there are many numerical features in 
data sets. Then, a neighborhood rough set that supports both con- 
tinuous and discrete data was proposed to deal with this challenge 
[37] . There are some works using the neighborhood rough set for 
feature selection [38–42] and it has been proved as an effective 
approach in the handling of feature selection problems. We aim 

to apply neighborhood rough set theory in the handling of online 
streaming feature selection. This is because rough set based data 
mining does not require any domain knowledge [21] . In addition, 
we focus on class imbalance data where instances of the minor- 
ity class are rare in data sets. We refine the neighborhood rough 
set method in this paper and use neighbors’s class information 
for feature selection. The proposed neighborhood rough set based 
method does not need to consider the global class distribution of 
a data set which makes the impact of class imbalance be relatively 
small. However, all these neighborhood rough set based methods 
mentioned above were designed for traditional batch feature se- 
lection and there is no work of using a neighborhood rough set for 
feature selection in an online manner. 

We would like to distinguish online streaming feature selec- 
tion in this paper from previous studies of dynamic information 
systems in [43–47] . A complete information system is defined as 
S = (U, C ∪ D, V, f ) , where U is a non-empty finite set of objects, 
C is the set of condition attributes and D is the set of decision 
attributes. V = 

⋃ 

a ∈ A V a , where V a is a domain of attribute a and 
A = C ∪ D . f : U ×A → V is an information function such that f ( x, 
a ) ∈ V a for every x ∈ U, a ∈ A . Nowadays, the dynamic information 
system learning approaches based on Rough Set theory mainly fo- 
cus on the following two cases. (1) The object set in an information 
system evolves over time while the attribute set remains constant. 
(2) The attribute set in the information system evolves over time 
while the object set remains constant. Most existing efforts con- 
sider the situation where objects or features are available in the 
information system [48–51] . It is different from online streaming 
feature selection where the number of objects is fixed and the fea- 
ture set grows with time. At each time stamp, we can just get one 
feature from the streaming features and the full feature space is 
unknown or inaccessible. 

Motivated by this, in this paper, we first formalize the problem 

of online streaming feature selection for class imbalance data and 
then present an Online Feature Selection framework based on the 
dependency between the condition features and decision classes, 
named OFSD. Our contributions are as follows: 

• We formally define the problem of online streaming feature se- 
lection for class imbalance data. 

• We propose an online feature selection framework based on the 
dependency of either a single feature or a selected feature set 
to decision classes. To the best of our knowledge, all existing 
online feature selection methods measure features by a certain 
criterion individually and there is no related work considering 
the selected feature set as a group. 

• A new Online Feature Selection algorithm based on the de- 
pendency between condition features and decision classes in 
K nearest neighbors (called K-OFSD) is proposed to handle the 
class imbalance data in an online manner. In order to select fea- 
tures which can get high separability between the small class 
and the large class, we make a full use of the neighbors’ class 
information near to the target object. For the class imbalance 
problem, we refine the neighborhood rough set theory and use 
the information of a fixed number of nearest neighbors to se- 
lect features, which can promote the dependency between con- 
dition features and decision classes. 

• Extensive experimental studies show that our proposed algo- 
rithm can get better performance than traditional imbalanced 
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Fig. 1. δ neighborhood rough set. 

feature selection approaches and state-of-the-art online stream- 
ing feature selection methods in the handling of high- 
dimensional class-imbalanced data. 

The rest of the paper is organized as follows. Section 2 gives 
a brief introduction of neighborhood rough set theory. 
Section 3 presents our framework and the new algorithm. 
Section 4 reports experimental results and analyses all experimen- 
tal algorithms. Section 5 concludes the paper. 

2. Neighborhood rough set 

Rough set theory, proposed by Pawlak, has been proven to be 
an effective tool for feature selection, rule extraction and knowl- 
edge discovery [32] . For classical rough set, the objects with the 
same feature values in terms of attributes B are drawn together 
and form an equivalence class denoted by [ x ] B . The family of ele- 
mental granules {[ x i ] B , x i ∈ U } builds a concept system to describe 
an arbitrary subset of the sample space. Two unions of elemen- 
tal granules are associated with X : lower approximation and upper 
approximation. 

B X = { [ x i ] B | [ x i ] B ⊆ X }; (1) 

B X = { [ x i ] B | [ x i ] B ∩ X 6 = ∅} . (2) 

The lower approximation is the maximal union of elemental gran- 
ules consistently contained in X , while the upper approximation 
is the minimal union of elemental granules containing X. The dif- 
ference between lower approximation and upper approximation is 
called approximation boundary of X : BN(X ) = B X − B X . 

Pawlak’s rough sets were originally proposed to deal with cat- 
egorical data. However, in real-world applications, there are many 
numerical features in data sets. Then, a neighborhood rough set 
is proposed to deal with numerical data [37–40,52,53] . In simple 
terms, the neighborhood of x i is a subset of samples close to x i . 
There are some ways to define the neighborhoods of samples [39] . 
We can define it with a fixed radius from the prototype sample ( δ
neighborhood, as shown in Fig. 1 [52] ) or the neighborhood with k 
samples (k-nearest neighborhood). 

As shown in Fig. 1 , all the δ neighbor samples of x 1 have the 
same class label C 1 of x 1 with mark “∗” and the neighborhood sam- 
ples of x 3 in a δ area are completely marked with “+” with class 
label C 2 . Meanwhile, the samples in the neighborhood of x 2 come 
from classes C 1 and C 2 and we define the samples of x 2 are the 
boundary objects. In general, we need to find a feature subspace 
on which the boundary region is maintained as little as possible. 

Table 1 

An example dataset. 

x ∈ U f 1 f 2 f 3 f 4 d 

x 1 3 5.6 -66 3.05 -1 
x 2 5 6.9 95 4.84 1 
x 3 8 5.3 -28 5.89 1 
x 4 13 12.3 -35 6.14 1 
x 5 6 15.2 72 6.55 -1 
x 6 5 2.6 42 10.94 1 
x 7 9 5.8 -33 23.85 -1 
x 8 15 6.4 15 23.85 -1 

For a class imbalanced data set, the number of instances of 
small class ( C small ) is far less than the large class ( C large ). If we use 
δ neighborhood information for feature selection, the instances of 
C small can easily be overwhelmed by C large and it is difficult to se- 
lect the value δ. Thus, we use the k-nearest neighborhood relation 
for feature selection of class imbalance data. The definition of k- 
nearest neighborhood rough set is given below. 

Definition 1. Considering object x and given a set of numerical at- 
tributes B to describe the object, we call the k-nearest-neighbors 
of x in terms of a k-nearest-neighbor information granule, denotes 
as k B ( x i ). 

k B (x i ) = { x j | 1B (x i , x j ) ∈ Min k { Neighbors } , x j ∈ U} , (3) 

where Min k { Neighbors } denotes the k nearest neighbors of x i . 1 is 
a distance function (such as Euclidean distance), and 1( x, y ) de- 
notes the distance between x and y . For ∀ x, y, z ∈ U , it satisfies: 

(1) 1( x, y ) ≥0, 1(x, y ) = 0 if and only if x = y ; 
(2) 1(x, y ) = 1(y, x ) 

(3) 1(x, z) ≤ 1(x, y ) + 1(y, z) 

Table 1 shows an example dataset to be used to illustrate the 
definition of k-nearest-neighbors, where the distance function is 
calculated with Euclidean distance. 

Let’s take object x 3 and feature set B = { f 1 , f 2 } with 2- 
nearest-neighbors as an example. First, we calculate all dis- 
tances between x 3 and x i ( i 6 = 3) on B namely: 1B (x 3 , x 1 ) = 
√ 

(8 − 3) 2 + (5 . 3 − 5 . 6) 2 = 5 . 009 , 1B (x 3 , x 2 ) = 3 . 4 , 1B (x 3 , x 4 ) = 

8 . 602 , 1B (x 3 , x 5 ) = 10 . 1 , 1B (x 3 , x 6 ) = 4 . 036 , 1B (x 3 , x 7 ) = 1 . 118 , 1B 

(x 3 , x 8 ) = 7 . 086 . Then we can see that the first two smallest values 
are 1( x 3 , x 7 ) and 1( x 3 , x 2 ). Thus, the 2-nearest-neighbors of x 3 on 
feature set B are denoted as k B (x 3 ) = { x 7 , x 2 } . 

Like Pawlak’s rough set model, we give the lower and upper 
approximations of k-nearest neighborhood as follows. 

Definition 2. Given an arbitrary subset X of the sample space 
and a family of k-nearest-neighbor information granules k B ( x i ), i = 

1 , 2 , . . . , n, we define the lower and upper approximations in terms 
of relation K as 

K B X = { x i | k B (x i ) ⊆ X, x i ∈ U}; (4) 

K B X = { x i | k B (x i ) ∩ X 6 = ∅ , x i ∈ U} . (5) 

The lower approximation of a decision, also called the positive 
region of the decision, is denoted by POS B ( D ). 

Given a neighborhood decision system NDT = < U, A, D >, 

where U is the sample set, A is the condition attribute set and D 

is the decision attribute set. Assuming B is a subset of A , we have 
the definition of dependency degree as follows. 

Definition 3. The dependency degree of B to D is defined as the 
ratio of consistent objects: 

γB (D ) = 
CARD (P OS B (D )) 

CARD (U) 
, (6) 
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where CARD ( U ) is number of instances of the universe (sample set), 
and CARD ( POS B ( D )) is the number of positive region objects. 

The dependency degree reflects the describing capability of all 
attributes in B . Meanwhile, it can also be considered as the signif- 
icance of attributes in B to approximate decision D . 

3. Online dependency feature selection framework 

In this section, we first give a definition on online stream- 
ing feature selection for class imbalance data. Then we intro- 
duce three evaluation criteria of “maximal-dependency, maximal- 
relevance and maximal-significance” based on the dependency be- 
tween condition features and decision classes. Our new online fea- 
ture selection framework and a new algorithm based on it by using 
the nearest K-neighbors information will be presented sequentially. 

3.1. Problem statement 

An online streaming feature selection framework can be de- 
fined as F = (U, C ∪ D, f, t) , where U is a non-empty finite set of 
objects, C is the condition attribute set, and D is the decision 
attribute set. Let C = [ x 1 , x 2 , . . . , x n ] 

T 
∈ R n ×d consist of n samples 

over a d -dimensional feature space F = [ f 1 , f 2 , . . . , f d ] 
T 

∈ R d . Let 
D = [ y 1 , y 2 , . . . , y n ] 

T 
∈ R n ×1 consist of n samples over the class la- 

bel (decision feature space) L . Let L = 
[

l small , l large 
]T 

∈ R denote the 
class label vector, where there are far more instances in l large than 
in l small . Given U, C and D , at each time stamp t , we get a fea- 
ture f t of C ∪ D without knowing the exact number of d in advance. 
The problem is to derive a mapping f : C ′ → L at each time stamp 
t , which is as good as possible using a subset of features that have 
arrived so far. 

Regarding the high-dimensional class imbalance data, tradi- 
tional online feature selection approaches can not look after the 
imbalance data distribution and tend to be overwhelmed by the 
large classes and ignore the small ones. When the skewness of the 
class distribution in a data set is drastically high, a naive online 
feature selection approach can get very high accuracy on the whole 
data set by classifying all instances to the large class. Nevertheless, 
this does not make much sense because all instances in the small 
class are classified falsely. Meanwhile, in real-world applications, 
such as in the field of medical diagnosis, people pay more atten- 
tion to those rare abnormal cases than the common normal cases. 
Thus, it is nontrivial for us to provide a new solution to the prob- 
lem of class imbalance for online feature selection. In the next sec- 
tion, we will introduce three evaluation criteria for our new online 
feature selection framework. 

3.2. Evaluation criteria of maximal-dependency, maximal-relevance 

and maximal-significance 

In order to remove irrelevant and redundant features in the 
process of feature selection, we introduce three evaluation criteria 
as follows [53] . 

3.2.1. Maximal-dependency 

Let C = C 1 , C 2 , . . . , C m denote the se t of m condition features of 
a given data set. In terms of neighborhood rough sets, the task of 
feature selection is to find a feature subset S ⊆C with d < m features 
which have the largest dependency D on the decision attribute set 
D . It can be represented as Eq. 7 . 

Max D (S, D ) , D = γ{ C i ,i =1 , 2 , ... d} (D ) , (7) 

where D = γ{ C i ,i =1 , 2 , ... d} 
(D ) indicates the dependency between the 

feature subset S and the target class label D as shown in Eq. 6 . 

Theoretically, the maximal-dependency is the best evaluation 
criterion in feature selection with neighborhood rough sets. How- 
ever, it is hard to generate the resultant equivalence classes using 
the maximal-dependency in high-dimensional spaces due to the 
following two challenges: the number of samples is often insuf- 
ficient and the generation of resultant equivalence classes is usu- 
ally an ill-posed problem [5] . In addition, we can not only use 
maximal-dependency for online streaming feature selection be- 
cause we just get one feature at each time stamp and we do not 
know the whole feature space in advance. 

3.2.2. Maximal-relevance 

Maximal-relevance is to search features which approximate 
D (S, D ) using Eq. (7) with the mean value of all dependency val- 
ues between each individual feature C i and the target class label 
D : 

Max R (S, D ) , R = 
1 
| S| 

∑ 

C i ∈ S 

γC i (D ) . (8) 

The dependency among selected features according to 
maximal-relevance could have rich redundancy. For example, 
if two features highly depend on each other, both of them are 
in the candidate feature subset, and we remove one of them, 
the respective class discriminative power would not change a lot. 
Thus, the evaluation criterion of maximal-relevance can select 
features with a high dependency to the decision classes, but it can 
not remove redundancy in the selected feature subset. 

3.2.3. Maximal-significance 

Definition 4. Given condition attribute set C and a decision at- 
tribute set D , a feature A ∈ C , the significance of A is defined as: 

σC (A, D ) = γC (D ) − γC−A (D ) . (9) 

With the significance of each feature to a feature set, we can 
measure each feature’s importance in the selected candidate sub- 
set. The maximal-significance condition can select mutually exclu- 
sive features as follows: 

Max S (S, D ) , S = 
1 
| S| 

∑ 

C i ∈ S 

{ σS (C i , D ) } . (10) 

For online feature selection, the features flow in one by one 
over time. We can not test all combinations of candidate features 
to maximize the dependency of the selected feature set as Eq. (7) . 
However, we can use the “maximal-relevance” condition to select 
relevant features and discard irrelevant features at first. Then we 
use the “maximal-significance” criterion to remove nonsignificant 
features in selected feature set. The “Maximal-dependency” crite- 
rion will be used as the final goal of selecting the feature set with 
maximal dependency. In the next section, based on the aforemen- 
tioned three measures, we will propose a new online feature se- 
lection framework. 

3.3. Our framework 

Feature selection aims to derive a mapping function from sam- 
ples to classes that is “as good as possible”. This can be treated as 
a decision system problem [52] . 

Definition 5. Let DS = < U, A, D > denote a decision system, where 
U is the sample set, called the universe, A is the condition attribute 
set and D is the decision attribute set. 

Let γ S ⊂A ( D ) denote the dependency degree of S to D , where 
S is a subset of A . If there is only one feature in S , we can de- 
fine the dependency degree of a single feature f as γ f ( D ). Thus, 
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with the “maximal-dependency” evaluation criterion, the problem 

of feature selection can be treated as finding a subset S ⊂A where 
γ S ( D ) achieves the maximum, as shown in Eq. (7) . 

For high dimensional data sets, there are always many irrele- 
vant features. At time stamp j , if f j is irrelevant, we can just discard 
this feature. An irrelevant feature means a low dependency to the 
decision class. 

Theorem 1. Suppose at time stamp t j−1 , the selected feature set 

is S j−1 . Let R j−1 = 
1 

| S j−1 | 

∑ 

f i ∈ S j−1 
γ f i 

(D ) and ∀ γ f i ∈ S j−1 
> α. At time 

stamp t j , the new arriving feature is f j . If γ f j 
(D ) < α and we add f j 

into S j−1 , then R j < R j−1 . 

Proof 1. Let | S j−1 | = n j−1 and R j−1 = r j−1 . It is obvious that 
∑ 

f i ∈ S j−1 
γ f i 

(D ) = r j−1 × n j−1 . ∵ ∀ γ f i ∈ S j−1 
> α, ∴ r j−1 > α. If we add 

f j into S , then S j = S j−1 ∪ f j . 
R j = 

1 
| S j | 

∑ 

f i ∈ S j 
γ f i 

(D ) = 
1 

n j−1 +1 
(n j−1 × r j−1 + γ f j 

(D )) 

= 
n j−1 

n j−1 +1 
r j−1 + 

1 
n j−1 +1 

γ f j 
(D ) = r j−1 + 

1 
n j−1 +1 

(γ f j 
(D ) − r j−1 ) . 

∵ γ f j 
(D ) < α < r j−1 , ∴ γ f j 

(D ) − r j−1 < 0 , ∴ R j < R j−1 . 

Thus, with the “maximal-dependency” evaluation criterion, if 
we add a feature with a low dependency ( γ f j 

(D ) < α) into the 

selected feature set S (while all other features in S have the de- 
pendency bigger than α), the mean value of all dependency values 
between each individual feature f i ( f i ∈ S ) and the target class label 
D will decrease. For the arriving feature f j , if γ f j 

(D ) is smaller than 

the threshold α, it will be discarded for efficiency. 

Theorem 2. [54] Suppose B is a subset of conditional features, f is 
an arbitrary conditional attribute that belongs to the dataset, and D 

is the set of decision attributes. Then γ ( B ∪ f, D ) ≥γ ( B, D ) . 

Proof 2. The proof of this theorem is available in [54] . 

Theorem 3. Suppose at time stamp t j−1 , the selected feature set is 

S j−1 . At time stamp t j , the new arriving feature is f j . If γ f j 
> γS j−1 , 

then γ f j 
> γ∀ f i ∈ S j−1 

. 

Proof 3. Let S j−1 = { f ′ , f ′′ , . . . , f i } , and let γ (S j−1 , D ) denote 
as γS j−1 for short. From Theorem 2 , we can deduce that 
γS j−1 ≥ γ{ S j−1 − f i } ≥ γ{ S j−1 − f i − f i −1 } ≥ · · · ≥ γ f ′ . ∴ γS j−1 ≥ γ∀ f i ∈ S j−1 

. 

∵ γ f j 
> γS j−1 , ∴ γ f j 

> γ∀ f i ∈ S j−1 
. 

If the new arriving feature f j has a bigger dependency than the 
selected feature set S j−1 , γ f j 

will be bigger than all the features in 

S j−1 . It is obvious that if we add f j into S j−1 , R j will decrease. If 
we replace the selected feature set S j−1 with f j ( S j = { f j } ) , then, 
R j = r f j . According to Theorem 3 , γ f j 

> γ∀ f i ∈ S j−1 
, then γ f j 

> R j−1 . 

Thus, R j > R j−1 . With the “maximal-dependency” evaluation crite- 
rion, we replace the current selected feature set with a new arriv- 
ing feature when the feature has a higher dependency degree. That 
is, with the new arriving feature f j at the jth time stamp, if γ f j 

(D ) 

is bigger than γS j−1 (D ) , we will just retain f j as S j and discard all 
of the selected features in S j−1 . 

If the arriving feature f j at time stamp j satisfies the “maximal- 
relevance” constraint ( γ f j 

(D ) > α), the dependency of f j is equal to 

or lower than the dependency of the currently selected feature set 
S j−1 ( γ f j 

(D ) ≤ γS j−1 ). In order to decide whether adding feature f j 
into S , we need to compute the significance of f j . Thus, we give 
the definition of significance measures in online feature selection 
as follows. 

Definition 6. Given the arriving feature f j and selected feature sub- 
set S , the significance of f j can be denoted as: 

Sig( f j ) = γS∪ f j (D ) − γS (D ) . (11) 

With the “maximal-significance” evaluation criterion, for the ar- 
riving feature f j , if and only if Sig ( f j ) > 0, f j will be added onto the 
candidate feature set. This means, we only select those features 
that enable increasing the dependency degree of the selected sub- 
set to the decision attribute. 

Based on the above analysis, we propose a new Online Fea- 
ture Selection framework based on the dependency between con- 
dition features and the decision classes, named OFSD as shown 
Algorithm 1 . With the “maximal-dependency, maximal-relevance 

Algorithm 1 Our OFSD framework. 

Require: 

S t i : the selected feature set at time stamp t i ; 
α: threshold of the dependency between a single feature and 
the decision attribute; 

Ensure: 

S: the selected feature set 
1: Initialize S to {}; 
2: Repeat 

3: Get a new feature f i at time t i ; 
4: Calculate the dependency of f i with classes: γ f i 
5: IF γ f i 

< α
6: Discard f i ; and go to Step 17; 
7: End IF 
8: IF γ f i 

> γS t i −1 
9: S t i = f i 
10: ELSE 
11: IF γS t i −1 ∪ f i 

− γS t i −1 
> 0 

12: S t i = S t i −1 ∪ f i 
13: ELSE 
14: S t i = S t i −1 
15: END IF 
16: END IF 
17: Until no more features are available; 
18: return S; 

and maximal-significance” evaluation criteria, OFSD can select fea- 
tures with high correlation, high dependency and low redundancy. 

At time stamp i , we calculate the dependency of arriving fea- 
ture f i at Step 5 and compare it with the threshold α. It can greatly 
reduce the running time by discarding features with a lower de- 
pendency. If γ f i 

is bigger than α, we will compare it with the de- 
pendency of the selected feature set γS t i −1 

at Step 8. If it is also 

larger, all the features in S will be removed and only the feature 
f i is maintained. Otherwise, we will calculate the significance of f i 
at Step 11. Only if the significance of f i is bigger than 0 (in other 
words, the arriving feature f i can increase the dependency degree 
of the selected subset), f i will be added onto the candidate subset. 
Otherwise, f i will be discarded. 

The key technique in our framework is to calculate the de- 
pendency between condition features and decision attributes. In 
the following section, we will give a framework for dependency 
computation. 

3.4. Dependency computation 

In this paper, we develop a refined method based on the neigh- 
borhood rough set theory to calculate the dependency between 
features and classes for class imbalance data. The proposed depen- 
dency computation method is shown as Algorithm 2 . 

At Steps 3–6, we calculate the CARD value of each instance x i 
and get the sum for the final dependency degree. The CARD value 
ranges from 0 to 1, denoted as the consistency of x i ’s class attribute 
with its neighbors’ class attributes. Theoretically, we can use any 
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Algorithm 2 Dependency computation. 

Require: 

X S : sample values on feature set S; 
R : neighborhood relation, 

Ensure: 

dep S : dependency on feature set S
1: card S : the number of positive samples S, initialized to 0 
2: card U : number of instances of X S (number of universe, N) 
3: FOR each x i in X S 
4: find the neighbor samples of x i on R as S R (x i ) 
5: calculate the card value of x i as CARD (S R (x i )) 

6: card S = card S + CARD (S R (x i )) 

7: END FOR 
8: dep S = card S /card U 
9: return dep S ; 

neighborhood relation to calculate the dependency of feature set S . 
The value of Card ( S R ( x i )) indicates the distribution of classes near 
by x i . 

We can also use different methods for calculating the value of 
CARD, such as: 

• Card _ Consistency : If all the classes of samples in S R ( x i ) 
are the same as the class of x i , then Card(S R (x i )) = 1 ; else 
Card(S R (x i )) = 0 . 

• Card _ Weight : Assume Num P is the number of samples in S R ( x i ) 
which have the same class as x i , and Num S is the size of set 
S R ( x i ). 

If Num p 
Num S 

> γ , then Card(S R (x i )) = 
Num p 
Num S 

; else Card(S R (x i )) = 0 , 

where γ is a threshold and the default value is set to 0.5. 
• Card _ Distance : Assume Num P is the number of samples in 
S R ( x i ) which have the same class as x i , and Sum ( dis p ) is the sum 

of distances to x i from these Num P samples. Num N is the num- 
ber of samples in S R ( x i ) which have the different class to x i and 
Sum ( dis n ) is the sum of distances to x i from these Num N sam- 
ples. Num S is the size of set S R ( x i ). 

If Num p 
Num S 

≥ γ1 , then Card(S R (x i )) = 1 ; 

If Num p 
Num S 

≤ γ2 , then Card(S R (x i )) = 0 ; 

If γ2 < 
Num p 
Num S 

< γ1 , and if Sum (dis p ) 
Num N 

> 
Sum (dis n ) 
Num N 

, then 

Card(S R (x i )) = 1 , else Card(S R (x i )) = 0 , where γ 1 and γ 2 
are thresholds that control the ratio of Num P to Num N 

respectively. 

In a class imbalanced data set, the number of instances in the 
large class is far more than that in the small class. In order to find 
the features which can get higher separability between the large 
class and the small class, we should treat instances from different 
classes with different strategies. Thus, we propose the CARD func- 
tion Card_Imbalanced for dependency computation in Algorithm 

3 . 
At Steps 3–11, we can see the difference between C large and 

C small instances. If x i belongs to the large class, only if all the neigh- 
bors belong to C large , we will set the CARD value to 1. Otherwise, 
if x i is in the small class, we calculate the ratio of the number of 
instances with C small to the total number of neighbors as the CARD 

value. In order to prevent instances in the small class from being 
overwhelmed by the instances in the large class, we strengthen 
consistency constraints of the large class and weaken consistency 
constraints of the small class. 

Algorithm 3 Card_Imbalanced function. 

Require: 

C x i : the class label of x i ; 
R : neighborhood relation. 

Ensure: 

Card x i : the CARD value of x i 
1: N R : the number of neighbors on R 
2: N p : the number of neighbors with the same class label of x i 

on R 
3: IF C x i == C large 
4: IF N R == N p 

5: Card x i = 1 
6: ELSE 
7: Card x i = 0 
8: End IF 
9: ELSE // C x i == C small 

10: Card x i = N p /N R 

11: END IF 
12: return Card x i ; 

3.5. The K-OFSD algorithm 

3.5.1. Dependency function of K-OFSD 

We use k S ( x i ) to calculate the dependency and propose the On- 
line Feature Selection algorithm based on dependency in K nearest 
neighbors, named K-OFSD. Based on the OFSD framework, the dif- 
ference lies in the dependency calculation denoted as Dep K . More 
details of Dep K are as shown in Algorithm 4 . 

Algorithm 4 Dep K of K-OFSD. 

Require: 

K: the number of nearest samples ; 
X S : sample values on feature set S; 

Ensure: 

dep S : dependency of S
1: Card S : the sum of every sample’s CARD value on S, initialized 

to 0 
2: Card U : instance number of X S (number of universe, N) 
3: FOR each x i in X S 
4: C x i : the class label of x i 
5: Find the K nearest samples of x i as S K (x i ) 
6: C ard S = C ard S + Card_Imbalanced (C x i , S K (x i )) 

7: END FOR 
8: dep S = C ard S /C ard U 
9: return dep S ; 

In Dep K , Step 5 finds K nearest neighbors of each x i as 
the neighborhood relation instance set S K ( x i ). Step 6 uses 
Card_Imbalanced function for card value calculation. The time 
complexity of Dep K is O (| X S | 2 ). The complete algorithm of K-OFSD 

is shown in Algorithm 5 . 
The default value of α is set as 0.5 which means more than half 

of the K nearest neighbors for each object x i have the same class 
label as x i . The parameter K that controls the number of neighbors 
affects the dependency value of feature f j at time stamp j . An im- 
portant task in K-OFSD is how to choose a good and unified value 
K for different data sets. Actually, we will see that K-OFSD is not 
very sensitive to parameter K . More details will be provided in the 
experimental analysis in Section 4.2 . 

3.5.2. The time complexity of K-OFSD 

The time complexity of K-OFSD depends on the dependency 
function Dep K . Suppose the data set is DS , the number of instances 
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Algorithm 5 K-OFSD. 

Require: 

S t i : the selected feature set at time stamp t i ; 
K: the number of nearest samples; 
α: threshold of the dependency between a single feature and 
the decision attribute (default value is 0.5); 

Ensure: 

S: the selected feature set 
1: Initialize S to {}; 
2: Repeat 

3: Get a new feature f i at time t i ; 
4: Calculate the dependency of f i as: Dep K (X f i ) 
5: IF Dep K (X f i ) < α
6: Discard f i ; and go to Step 17; 
7: End IF 
8: IF Dep K (X f i ) > Dep K (S t i −1 ) 

9: S t i = f i 
10: ELSE 
11: IF Dep K (S t i −1 ∪ f i ) > Dep K (S t i −1 ) 

12: S t i = S t i −1 ∪ f i 
13: ELSE 
14: S t i = S t i −1 
15: END IF 
16: END IF 
17: Until no features are available; 
18: return S; 

Table 2 

Experimental data sets. 

Data set Instances(Train/Test) Features Class(min./maj.) Ratio 

DLBCL 77(39/38) 6285 19 / 58 3.05 
LUNG 181(91/90) 12533 31 / 150 4.84 
LYM 62(31/31) 4026 9 / 53 5.89 
GLIOMA 50(25/25) 4433 7 / 43 6.14 
SRBCT 83(42/41) 2308 11 / 72 6.55 
LUNG2 203(102/101) 3312 17 / 186 10.94 
CAR 174(87/87) 9182 7 / 167 23.85 

in DS is N , the number of features in DS is F , and the number of 
neighbors used in Dep K is K . According to Section 3.5.1 , the time 
complexity of Dep K is O (| N | 2 ). At time stamp t , a new feature f t 
is present to the K-OFSD algorithm. Assume S t is the selected fea- 
ture subset at this time. K-OFSD first calculates the dependency of 
f t , and the time complexity is O (| N | 2 ). If the dependency of f t is 
smaller than α(0.5), f t will be discarded. Otherwise, we will calcu- 
late the dependency of S t and compare it with Dep K ( f t ). This time 
complexity is also O (| N | 2 ). If the dependency of f t is bigger than 
Dep K ( S t ), we replace S t with f t and go on to the next feature. Oth- 
erwise, we will calculate the dependency of S t ∪ f t and compare 
it with Dep K ( f t ). Then we can decide on whether adding f t onto 
the selected feature subset or discarding it. The time complexity is 
O (| N | 2 ). 

In sum, the whole time complexity of K-OFSD is O (| F || N | 2 ). We 
can use more effective dependency calculation methods to improve 
the time performance in our future work. 

4. Experimental results 

4.1. Experiment setup 

4.1.1. Data sets 

In this section, we apply the proposed online feature selection 
algorithm on seven high dimensional DNA microarray data sets 
[55,56] as shown in Table 2 . 

In our experiments, we divide some data sets into one-versus- 
rest problems and adapt these data sets to imbalanced binary clas- 
sification. Detailed descriptions of these data sets are as follows. 

• DLBCL: This diffuse large B-cell lymphoma data set has a total 
of 77 samples in two classes, diffuse large B-cell lymphomas 
(DLBCL) and follicular lymphoma (FL), which have 58 and 19 
instances, respectively. Each instance contains 6285 features. 

• LUNG: The lung cancer data set contains a total of 181 sam- 
ples in two classes, which have 31 malignant and 150 normal 
samples, respectively. 

• LYMPHOMA: The lymphoma data set contains a total of 62 
samples in three classes which have 11, 9 and 42 samples, re- 
spectively. To adapt this data set to imbalanced binary classifi- 
cation, we studied a class of 9 instances versus the rest. 

• GLIOMA: The GLIOMA data set contains a total of 50 samples 
in four classes, cancer glioblastomas (CG), non-cancer glioblas- 
tomas (NG), cancer oligodendrogliomas (CO) and non-cancer 
oligodendrogliomas (NO), which have 14, 14, 7, 15 samples, re- 
spectively. To adapt this data set to imbalanced binary classifi- 
cation, we studied class CO (7 instances) versus the rest. 

• SRBCT: The SRBCT data set contains a total of 83 samples 
in four classes, the Ewing family of tumors (EWS), Burkitt 
lymphoma (BL), neuroblastoma (NB) and rhabdomyosarcoma 
(RMS). Every sample in this data set contains 2308 gene ex- 
pression values. Among the 83 samples, 29, 11, 18, and 25 sam- 
ples belong to classes EWS, BL, NB and RMS, respectively. To 
adapt this data set to imbalanced binary classification, we stud- 
ied class BL (11 instances) versus the rest. 

• LUNG2: The LUNG2 data set contains a total of 203 samples 
in five classes, adenocarcinomas, squamous cell lung carcino- 
mas, pulmonary carcinoids, small-cell lung carcinomas and nor- 
mal lung, which have 139, 21, 20, 6, 17 samples, respectively. To 
adapt this data set to imbalanced binary classification, we stud- 
ied class normal lung (17 instances) versus the rest. 

• CAR: The CAR data set contains a total of 174 samples in eleven 
classes, prostate, bladder/ureter, breast, colorectal, gastroesoph- 
agus, kidney, liver, ovary, pancreas, lung adenocarcinomas, and 
lung squamous cell carcinoma, which have 26, 8, 26, 23, 12, 11, 
7, 27, 6, 14, 14 samples, respectively. To adapt this data set to 
imbalanced binary classification, we studied class liver (7 in- 
stances) versus the rest. 

In our experiments, we use two basic classifiers, KNN and SVM 

in Matalab R2015b to evaluate a selected feature subset. We ran- 
domly select 1/2 of the samples for training and the rest for test- 
ing. The training and testing data sets have the same ratio of class 
imbalance. All experimental results are averaged over 20 runs and 
are conducted on a PC with Intel(R) i5-3470S, 2.9 GHz CPU, and 8 
GB memory. 

4.1.2. Performance metric for class imbalance data 

The most frequently used metric for classification is predictive 
accuracy. However, it is not appropriate for classification of imbal- 
anced data sets [26] . For instance, if the data set has 1% of the 
small-class instances and 99% of the large-class instances, and if a 
simple method classifies all samples to the large class, the accu- 
racy also can be up to 99%. In the classification for class imbalance 
data, we should take the small class with a higher misclassification 
cost [26] . 

In this work, we use the G-MEAN as the main performance 

metric [57] . G-MEAN = 

√ 
T P 

T P+ F N ∗
T N 

T N+ F P , where TP is the number of 

true positives, TN is the number of true negatives, FP is the number 
of false positives and FN is the number of false negatives. 
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Fig. 2. Accuracy on DLBCL varying with K. 

Fig. 3. Accuracy on GLIOMA varying with K. 

4.2. Parameter analysis for K-OFSD 

In this section, we will discuss the effect of parameter K in K- 
OFSD which controls the number of neighbors used in function 
Dep K . 

Figs. 2 , 3 , 4 , 5 show the experimental results of our algorithm 

on four data sets DLBCL, GLIOMA, LUNG2 and CAR varying with 
values of K from 1 to 10. Fig. 6 and Fig. 7 show the number of 
selected features and running time on these four data sets varying 
with different values of K . In these experiments, we select SVM 

and KNN as the basic classifiers, and the value of k in KNN is set 
to 1. 

From Fig. 2 to Fig. 7 , we have the following observations: 

• From Fig. 2 to Fig. 5 , the accuracy of K-OFSD with KNN is 
similar to with SVM. Meanwhile, the baselines KNN and SVM 

present a large gap in the accuracy, especially on data sets of 
DLBCL and LUNG2. This indicates that the features selected by 
K-OFSD can fit both KNN and SVM well. 
Besides, on DLBCL, our algorithm can perform better with any 
K value compared to the baseline using KNN, and it is inferior 

Fig. 4. Accuracy on LUNG2 varying with K. 

Fig. 5. Accuracy on CAR varying with K. 

Fig. 6. Number of selected features varying with K. 
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Fig. 7. Running time varying with K. 

to the baseline using SVM. On LUNG2, the accuracy of our algo- 
rithm with any K value is lower than the baselines using both 
KNN and SVM. On GLIOMA and CAR, our algorithm provides 
a higher accuracy or a lower accuracy with different K values 
compared to the baselines. This indicates the number of neigh- 
bors has little impact on data sets DLBCL and LUNG2, but has 
significant impact on data sets GLIOMA and CAR. This is closely 
related to the class distribution of each data set. 

• From Fig. 6 , the number of selected features on data sets CAR 
and GLIOMA is always around 2 and 3 despire varying with dif- 
ferent values of K . On data sets DLBCL and LUNG2, the num- 
ber of selected features increases first and then decreases. The 
number reaches the maximum when K is around 5 and 6. This 
indicates, for some data sets, the K value does not affect much 
the final selected number of features. For others, a suitable K is 
necessary for good performance. The main reason is the spar- 
sity of samples in different data sets. 

• From Fig. 7 , the running time of our algorithm is irrelevant to 
the value of K . 

• In sum, the accuracy fluctuates relatively large on some data 
sets (eg. GLIOMA and CAR) in comparison with others (eg. DL- 
BCL and LUNG2) when varying with values of K . When K > 5, 
the fluctuation becomes weak on predictive accuracy for all of 
the four data sets. This indicates that a relatively large value of 
K ( K > 5) is suitable for stable results. 

From the above experimental analysis, we can see that K-OFSD 

is sensitive to the parameter K for some data sets, and a relatively 
large value of K can provide a stable predictive accuracy for all data 
sets. We select K = 7 below for the global optimum in our experi- 
ments. 

4.3. The influence of numbers of features 

In this section, we test the influence of numbers of features 
on our method. Figs. 8 , 9 , 10 , 11 show the experimental results 
of predictive accuracy of our algorithm on four data sets DLBCL, 
GLIOMA, LUNG2 and CAR varying with numbers of features. Fig. 12 
and Fig. 13 show the number of selected features and running time 
on these four data sets varying with numbers of features. In these 
experiments, we set K = 7 for our algorithm and select SVM and 
KNN as the basic classifiers. The value of k in KNN is set to 1. 

From Fig. 8 to Fig. 13 , we have the following observations: 

Fig. 8. Accuracy on DLBCL varying with numbers of features. 

Fig. 9. Accuracy on GLIOMA varying with numbers of features. 

Fig. 10. Accuracy on LUNG2 varying with numbers of features. 
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Fig. 11. Accuracy on CAR varying with numbers of features. 

Fig. 12. Number of selected features varying with numbers of features. 

Fig. 13. Running time varying with numbers of features. 

Table 3 

G-MEAN predictive accuracy using the KNN classifier. 

Data set K-OFSD Fisher S2N PCC ReliefF MI 

DLBCL 0.9381 0.8111 0.9302 0 0.8451 0.9171 
LUNG 0.9925 0.983 0.9959 0.983 0.9829 0.9898 
LYM 0.9844 0.9788 0.9922 0.9384 0.9224 0.981 
GLIOMA 0.8817 0.5751 0.8506 0 0.7275 0.8334 
SRBCT 0.9971 0.9583 0.9789 0.9894 0.9525 0.9565 
LUNG2 0.9908 0.9586 0.9715 0.9844 0.9566 0.978 
CAR 0.9449 0.7256 0.9234 0 0.9065 0.9443 
AVERAGE 0.961 0.856 0.949 0.556 0.899 0.943 

• From Fig. 8 to Fig. 11 , the accuracy of K-OFSD with KNN per- 
forms similarly to SVM with different numbers of features. On 
the contrary, the baselines KNN and SVM present a gap in the 
predictive accuracy. Especially on data set DLBCL, with the in- 
creasing of the number of features, the predictive accuracy of 
the baseline with KNN is decreasing. The main reason is there 
are more and more irrelevant and redundant features flowing 
in. This indicates that the features selected by K-OFSD have 
high separability and can fit both KNN and SVM well. 
In addition, on data sets GLIOMA, LUNG2 and CAR, when the 
number of features is lower than 1500, the performance of K- 
OFSD is inferior to the baselines. As more and more features 
arrive, the predictive accuracy of K-OFSD becomes competitive 
with and then superior to the predictive accuracy of baselines. 
This also demonstrates K-OFSD can select highly discrimina- 
tive features from massive irrelevant and redundant streaming 
features. 

• From Fig. 12 , on data sets GLIOMA and CAR, the mean number 
of selected features is around 2 and 3 varying with different 
numbers of features. On data sets DLBCL and LUNG2, the num- 
ber of selected features increases with the number of features. 
This indicates that the number of selected features depends on 
specific data sets and it is different from each other. 

• From Fig. 13 , there is a linear relationship between the running 
time of our algorithm and the number of features. Besides, the 
linear slope is associated with the number of training instances. 

From the above experimental analysis, we can conclude that K- 
OFSD can select features with high separability varying with differ- 
ent numbers of features. The number of selected features is related 
to specific data sets and there is a linear relationship between the 
running time and the number of features. 

4.4. K-OFSD vs. traditional imbalanced feature selection methods 

In this section, we compare K-OFSD with five traditional imbal- 
ance feature selection methods, including: ReliefF [2] , Fisher Score 
[3] , S2N (signal-to-noise correlation coefficient) [30] , PCC (Pearson 
Correlation Coefficient) [30] and MI (mutual information) [4] . 

All these algorithms are implemented in MATLAB. The K value 
of ReliefF is set to 7, the same as K-OFSD. None of these five tradi- 
tional feature selection methods can handle the scenario of feature 
streaming in an online manner. Thus, we rank all features from 

high to low and select the same number of features for K-OFSD. 
We evaluate K-OFSD and all competing ones on the G-MEAN pre- 
dictive accuracy. 

Tables 3 and 4 summarize the G-MEAN predictive accuracy of 
K-OFSD against the other five competing algorithms using the basic 
classifiers of KNN (k = 1) and SVM. Table 5 shows the mean number 
of selected features on different data sets. 

From Tables 3, 4 and 5 , we have the following observations. 

• K-OFSD vs. Fisher. K-OFSD outperforms Fisher on all these data 
sets with both KNN and SVM. On data sets GLIOMA and CAR, 
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Table 4 

G-MEAN predictive accuracy using SVM as the base calssifier. 

Data set K-OFSD Fisher S2N PCC ReliefF MI 

DLBCL 0.9325 0.812 0.9194 0 0.8388 0.9136 
LUNG 0.9919 0.9695 0.9892 0.9898 0.9817 0.9898 
LYM 0.9784 0.9788 0.9922 0.9559 0.9442 0.9517 
GLIOMA 0.8498 0.5037 0.8434 0 0.6952 0.7482 
SRBCT 0.9942 0.9584 0.9894 0.9894 0.9563 0.9459 
LUNG2 0.9769 0.957 0.9635 0.9769 0.963 0.971 
CAR 0.9449 0.7256 0.9234 0 0.9064 0.9261 
AVERAGE 0.953 0.844 0.946 0.559 0.898 0.921 

Table 5 

The mean number of selected features. 

Data set K-OFSD/Fisher/S2N/PCC/ReliefF/MI 

DLBCL 10.9 
LUNG 25.7 
LYM 6.7 
GLIOMA 3.1 
SRBCT 5.2 
LUNG2 21.3 
CAR 1.7 

Fisher only gets the predictive accuracy of 0.5 and 0.7 respec- 
tively using KNN and SVM. Fisher computes the importance of 
each feature by calculating the difference of that feature’s mean 
values for the two classes. It measures features individually and 
it can not consider all selected feature set as a whole. The re- 
sults demonstrate that K-OFSD is superior to Fisher on imbal- 
ance data. 

• K-OFSD vs. S2N. K-OFSD performs better than S2N on five of the 
seven data sets. S2N performs stably on all of the seven data 
sets and gets the highest accuracy on data set LYM and LUNG. 
This result verifies the conclusion in [30] , that “S2N is a great 
candidate algorithm for feature selection in most applications 
on imbalance data”. Overall, S2N is very competitive to K-OFSD 

on predictive accuracy. 
• K-OFSD vs. PCC. K-OFSD outperforms PCC on six of the seven 
data sets. PCC gets the predictive accuracy 0 on data sets 
DLDBC, GLIOMA and CAR with both KNN and SVM. This is be- 
cause PCC can not classify the instances of the small class cor- 
rectly on these three data sets. In a word, PCC does not fit for 
feature selection on high imbalance data sets. 

• K-OFSD vs. ReliefF. K-OFSD gets higher predictive accuracy than 
ReliefF on all data sets with both KNN and SVM. ReliefF is simi- 
lar to K-OFSD, because they both use the neighbors’ information 
for feature selection. K-OFSD uses the Card_Imbalanced func- 
tion for dependency calculation which makes it more suitable 
for class imbalance data. Thus, K-OFSD is superior to ReliefF on 
imbalance data. 

• K-OFSD vs. MI. Both K-OFSD and MI perform stably. K-OFSD 

outperforms MI on all the seven data sets with both KNN and 
SVM. K-OFSD is a Rough Set based method which does not 
need to consider any domain knowledge other than the given 
dataset. This makes K-OFSD is more suitable than MI for class 
imbalance data sets. 

In sum, K-OFSD provides the best overall performance in five of 
the seven data sets, while it is also comparable to the best com- 
peting approaches on the remaining two data sets. Meanwhile, K- 
OFSD gets the highest mean predictive accuracy with both KNN 

and SVM. 

Table 6 

G-MEAN predictive accuracy using KNN as the base classifier. 

Data set K-OFSD Alpha-investing OSFS Fast-OSFS SAOLA 

DLBCL 0.954 0.4945 0.8991 0.9085 0.9235 
LUNG 0.9885 0.9054 0.9495 0.9789 0.9761 
LYM 0.9467 0.8639 0.8965 0.9050 0.9420 
GLIOMA 0.856 0.804 0.8171 0.8181 0.8449 
SRBCT 1 0.9669 0.9338 0.9316 0.9894 
LUNG2 0.9646 0.9795 0.9447 0.9260 0.9468 
CAR 0.9615 0.9449 0.94 4 4 0.9449 0.9449 
AVERAGE 0.953 0.851 0.912 0.916 0.938 

Table 7 

G-MEAN predictive accuracy using SVM as the base classifier. 

Data set K-OFSD Alpha-investing OSFS Fast-OSFS SAOLA 

DLBCL 0.9472 0.2394 0.8176 0.9085 0.9358 
LUNG 0.9823 0.9332 0.9600 0.9789 0.9795 
LYM 0.9350 0.3474 0.8127 0.9050 0.9579 

GLIOMA 0.8754 0 0.7214 0.8181 0.8667 
SRBCT 1 0.9789 0.9113 0.9316 1 

LUNG2 0.9779 0.9452 0.9656 0.9260 0.9394 
CAR 0.9615 0.9449 0.94 4 4 0.9449 0.9449 
AVERAGE 0.954 0.627 0.876 0.916 0.946 

Table 8 

Running time (seconds). 

Data set K-OFSD Alpha-investing OSFS Fast-OSFS SAOLA 

DLBCL 1.7052 0.6171 1.3934 0.9183 1.1944 
LUNG 9.2873 1.2159 16.1068 0.9714 5.1406 
LYM 1.1181 0.1851 1.0629 0.8916 0.9296 
GLIOMA 1.2012 0.2051 0.9888 0.8201 0.8402 
SRBCT 0.8133 0.129 0.7411 0.9421 0.5108 
LUNG2 4.7875 0.2449 4.1598 0.9506 1.0128 
CAR 12.4132 1.4197 4.8967 0.9443 2.073 
AVERAGE 4.5 0.5 4.2 0.9 1.7 

Table 9 

The mean number of selected features. 

Data Set K-OFSD Alpha-investing OSFS Fast-OSFS SAOLA 

DLBCL 10 1.4 1.7 3.5 17.1 
LUNG 21.6 9.2 2.7 5 39.2 
LYM 6.3 1.2 1.5 3.3 16.4 
GLIOMA 4.1 1 1.3 2.7 9.7 
SRBCT 5.1 13.2 2.3 3.9 17 
LUNG2 16.5 12.2 3 5.3 19.5 
CAR 2 31.1 3.2 4.2 19.8 
AVERAGE 9 10 2 4 20 

4.5. K-OFSD vs. online feature selection methods 

In this section, we compare our algorithm with four state- 
of-the-art online feature selection methods: Alpha-investing [20] , 
OSFS [15] , Fast-OSFS [15] , SAOLA [18] . 

All aforementioned algorithms are implemented in MATLAB 
[58] . The significance level α is set to 0.01 for OSFS, Fast-OSFS and 
SAOLA. For Alpha-investing, the parameters are set to the values 
used in [20] . We set K = 7 for K-OFSD as discussed in Section 4.2 . 
We evaluate K-OFSD and the competing ones on G-MEAN predic- 
tive accuracy, number of selected features and running time. 

Tables 6 and 7 summarize the G-MEAN predictive accuracy of 
K-OFSD against the other four algorithms using the KNN (k = 1) and 
SVM classifiers. Tables 8 and Tables 9 show the running time and 
mean number of selected features of K-OFSD against other four 
algorithms. 

From Tables 6 - 9 , we have the following observations. 

• K-OFSD vs. Alpha-investing. In Table 8 , Alpha-investing spends 
the least time in five of the seven data sets. Although Alpha- 
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investing is faster than K-OFSD on running time, it can not han- 
dle some data sets well. More specifically, in Tables 6 and 7 , 
K-OFSD outperforms Alpha-investing on six of the seven data 
sets with both KNN and SVM. In addition, the features selected 
by Alpha-investing do not fit for the SVM classifier. For exam- 
ple, Alpha-investing with SVM only gets the predictive accuracy 
of 0, 0.2, and 0.3 on GLIOMA, DLBCL and LYM respectively. In 
Table 9 , Alpha-investing only selects 1.4, 1.2 and 1 features on 
DLBCL, LYM and GLIOMA. The reason is that these data sets are 
very sparse and Alpha-investing can only select the first one or 
two features of these data sets. 

• K-OFSD vs. OSFS. K-OFSD outperforms OSFS on all data sets 
with both KNN and SVM. On running time, K-OFSD is compara- 
ble to OSFS. In Table 9 , we can see that OSFS selects the least 
mean number of features on these data sets. Thus, some impor- 
tant information is missing which causes the lower predictive 
accuracy. 

• K-OFSD vs. Fast-OSFS. Fast-OSFS is faster than K-OFSD on the 
whole, but K-OFSD performs better than Fast-OSFS on all data 
sets with both KNN and SVM. Fast-OSFS also selects a very few 

number of features on data sets and this lead to missing some 
important information. 

• K-OFSD vs. SAOLA. SAOLA is faster than K-OFSD. However, K- 
OFSD can beat SAOLA on all the seven data sets with KNN and 
can beat SAOLA on six of the seven data sets with SVM. Mean- 
while, K-OFSD selects a less number of features than SAOLA 
while gets higher predictive accuracy. This demonstrates that 
the features selected by K-OFSD are more discriminative and 
less redundant. 

In sum, our algorithm K-OFSD is not faster than some compet- 
ing algorithms of Alpha-investing, SAOLA and Fast-OSFS, but it out- 
performs all competing algorithms with the highest mean predic- 
tive accuracy on these imbalance data sets. 

5. Conclusions and future work 

In this paper, we have formalized the problem of online stream- 
ing feature selection for class imbalance data and proposed an on- 
line feature selection framework OFSD based on dependency be- 
tween features and classes. Unlike other online streaming feature 
selection approaches, OFSD selects features based on the depen- 
dency of either a single feature or a selected feature set to deci- 
sion classes. According to the OFSD framework, a new algorithm K- 
OFSD was proposed for class imbalance data with feature streams 
in an online manner. In order to select features which can get high 
separability between the small class and large class, we use the 
information of a fixed number of neighboring instances near by 
the target object. As compared to five traditional imbalanced fea- 
ture selection methods and four state-of-the-art online streaming 
feature selection algorithms, the proposed algorithm K-OFSD has 
demonstrated better performance for high-dimensional and class- 
imbalanced data. In our future work, we will improve the time 
performance of our algorithm by using more effective dependency 
calculation methods. Meanwhile, we will apply our algorithm to 
multi-class imbalanced data and other real-world applications with 
very high class imbalance data. 
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