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Abstract In the era of big data, the dimensionality of data
is increasing dramatically in many domains. To deal with
high dimensionality, online feature selection becomes
critical in big data mining. Recently, online selection of
dynamic features has received much attention. In situations
where features arrive sequentially over time, we need to
perform online feature selection upon feature arrivals.
Meanwhile, considering grouped features, it is necessary to
deal with features arriving by groups. To handle these
challenges, some state-of-the-art methods for online feature
selection have been proposed. In this paper, we first give a
brief review of traditional feature selection approaches.
Then we discuss specific problems of online feature
selection with feature streams in detail. A comprehensive
review of existing online feature selection methods is
presented by comparing with each other. Finally, we discuss
several open issues in online feature selection.

Keywords Big data, Feature selection, Online feature
selection, Feature stream.

1 Introduction

We are living in the "Big Data era" [1]. Data with large
volumes and high dimensionality are ubiquitous in many
domains, such as geometrics, computer vision, social media
and so forth. For instance, Flickr, as a public picture sharing
website, receives 55.8 million photos per month and 1.83
million photos per day, on average in 2014 [2]. Assuming
the size of each photo is 2 megabytes, this requires 3.66
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terabyte (TB) storage every single day. At the same time, the
dimensionality of data is also extremely high in some
applications. For example, in complementary DNA
microarray experiments, the total number of positive and
negative samples is usually no more than 100, but the
number of genes to be selected is usually 6,000 to
60,000 [3]. Moreover, the Web Spam Corpus 2011, is a
collection of approximately 330,000 spam web pages and
16,000,000 features (attributes) [4]. Thus, how to process
and get valuable information from massive and
high-dimensional data has become a great challenge [5, 6].

Feature selection is one of the most important techniques
in data mining and machine learning, and plays a critical
role in dealing with big data problems [7]. The task of
feature selection is to select a subset of relevant features for
building effective prediction models. Feature selection can
generate many potential benefits, such as reducing the
storage requirements, saving training and modeling times,
improving the prediction performance, providing a better
data understanding and so on [8]. Traditional feature
selection methods assume that all features are presented to a
learner before feature selection takes place. For example,
mRMR (minimal Redundancy and Maximal Relevance) [9]
in the principle of max-dependency, max-relevance and
min-redundancy, is a representative algorithm base on
mutual information. It aims to find a subset, in which the
features are with large dependency on the target class and
with low redundancy among each other.

Meanwhile, in real-world applications, not all features
can be presented before learning. For example, in image
analysis [10], multiple descriptors are exacted dynamically
to capture various visual information of images, including
HOG (Histogram of Oriented Gradients), color histogram
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and SIFT (Scale Invariant Feature Transform). Each of these
descriptors is generated independently. It is hence very
time-consuming or even unrealistic to wait until all features
are generated. Meanwhile, Mars crater detection from high
resolution planetary images is another real-world application
example [11]. Tens of thousands of texture-based features in
different scales and different resolutions can potentially be
generated from high resolution planetary images. It is
infeasible and time-consuming, if we are waiting for the
texture features to be generated through planetary images
until we have a near global coverage of the Martian surface.
Thus, it is necessary to perform feature selection as the
arrivals of features, called online feature selection with
streaming features [12].

Online feature selection with streaming features is one
branch of online feature selection [13]. It is designed to deal
with feature selection without the knowledge of an entire
feature space [12], that is, we cannot afford waiting until all
features arrive before learning. This category of online
feature selection assumes the number of data instances is
fixed and the number of features changes over time. The
representative works include the approaches of
Grafting [14], Alpha-investing [15] and OSFS (Online
Streaming Feature Selection) [16]. Meanwhile, to address
the challenges of online feature selection for extremely
high-dimensional data for big data, a Scalable and Accurate
OnLine Approach for feature selection called SAOLA was
proposed [13]. A common assumption in the
aforementioned approaches lies that features are generated
one by one. However, in real-world applications, features
can also be generated by groups. For instance, the descriptor
of each image consists of a group of features instead of an
individual feature [10]. Correspondingly, many approaches
of online group feature selection with streaming features
have been proposed, such as GFSSF (Group Feature
Selection with Streaming Features) [17] and OGFS (Online
Group Feature Selection) [18]. More precisely, GFSSF can
work at both the group and individual feature levels by
exploiting entropy and mutual information in information
theories. OGFS selects a significant feature by its
distinguishing capability and reduces redundancy by a
regression model.

The other branch of online feature selection assumes that
the number of features on training data is fixed while the
number of data instances changes over time, called online
feature selection with data streams [18]. Related work
includes [19–22]. In object tracking [20], success or failure
depends primarily on how distinguishable an object is from

its surroundings. It is most important to select a feature
space that can discriminate objects and their background. As
the foreground and background appearances are constantly
changing, the key is online and adaptive selection of an
appropriate feature space for tracking. Another example is in
CBIR (Content-Based Image Retrieval) [22], the online
learning process must solve a fundamental problem: which
features are more representative for explaining the current
query concept than the others.

Online feature selection with data streams is closely
related to the data mining on data streams. More details can
be found in data streaming mining [23]. However, this is
beyond the scope of our paper. In this paper we only focus
on online feature selection with streaming features.

The rest of the paper is organized as follows. Section 2
reviews traditional feature selection approaches. Section 3
first introduces several approaches of online feature
selection and then gives the analysis. Section 4 first
summarizes the benchmark data sets and evaluation
measures, introduces an open experimental tool of online
streaming feature selection, and then presents the
experiment analysis of several representative online feature
selection algorithms mentioned in this paper. Finally,
Section 5 discusses some challenging issues for online
feature selection and Section 6 concludes this paper.

2 Feature Selection

In this section, we first give the formalization of traditional
feature selection. Let X represent the data set, denoted as
X = [x1, x2, ..., xn]T ∈ Rn×d consisting of n samples (columns)
over a d-dimensional feature space F =

[
f1, f2, ..., fd

]T ∈ Rd.
Let C = [c1, c2, ..., cm]T ∈ Rm denote the class label vector
that has m distinct class labels. The task of feature selection
is to select a subset of features for F that can be used to derive
a mapping function from x to c that is "as good as possible"
according to some criterion.

Feature selection is an important technique which can be
used in many real-world applications [24, 25]. Finding an
optimal feature subset is usually arduous, and many
problems related to feature selection have been proved to be
NP-Hard [8]. A standard feature selection process consists
of four basic steps, namely subset generation, subset
evaluation, stopping criterion verification, and result
validation [26].

According to how the label information is used, feature
selection algorithms can be divided into supervised [27],
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unsupervised [28] and semi-supervised [29, 30] ones.
Supervised learning deals with the scenario that class labels
of the data are known or they can be calculated. It can get a
small subset and high accuracy. However, in practical
applications, we do not always know all of the class labels of
operational data or only know class labels of a few
operational data. Correspondingly, unsupervised learning
and semi-supervised learning have been proposed. Without
knowledge of class labels, unsupervised learning tries to
discover natural groupings in a set of objects. Since the
examples for learning are unlabeled, there is no error or
reward signal to evaluate a potential solution.
Semi-supervised learning uses both labeled data and
unlabeled data to modify a hypothesis obtained from labeled
data alone.

Considering whether using a classifier or not in feature
selection, we can further divide feature selection algorithms
into the following three categories: filter, wrapper and
embedded models [7].

Filter models can have a high efficiency in feature
selection and evaluate features without utilizing any
classification algorithms [31]. They evaluate the features by
a certain criterion and select features by ranking their
evaluation values [26]. Within the filter models, different
feature selection approaches can further be categorized into
two groups: feature ranking and subset search [32]. Feature
ranking methods evaluate the goodness of features
individually and obtain a ranking list of selected features
ordered by their goodness. Laplacian Score [33] and Fisher
Score [34] are two representative feature ranking methods.
Laplacian Score is unsupervised and evaluates a feature by
its power of locality preserving. Fisher Score is supervised
and seeks feature subsets which preserve the discriminative
ability of a classifier. Meanwhile, there are a series of feature
selection methods based on Constraint Score [35–39], that
is, by using pairwise constraints, they specify whether a pair
of data samples belong to the same class (must-link
constraints) or different classes (cannot-link constraints),
they do not have to access the whole training data, and have
a computational advantage on large-size data sets. Subset
search methods evaluate the goodness of each candidate
feature subset and select the optimal one according to some
evaluation measures [40–42]. Some popular criteria include
distance measures [43, 44], information measures,
dependency measures, and consistency measures [45, 46].

Wrapper models depend on specific machine learning
algorithms [47]. They need a search strategy to search the
space of all possible feature subsets and employ a specific

classifier to evaluate a subset directly. The popular search
strategies used in wrapper models include Best-First, Branch
and Bound, Simulated Annealing, Genetic Algorithms and
so on [8]. The popular classifiers include Decision Trees,
Naive Bayes, Least-square Linear Predictors and Support
Vector Machines. They use the performance of the learning
algorithms conducted on the selected subset to determine
which features are selected. Meanwhile they evaluate the
prediction accuracy of the target feature subset by cross
validations on the training set. Thus, these methods are
slower than filter methods on running speed, but they usually
give superior performance and a smaller subset [48]. It is
hence very conducive to identify the key features.

Embedded models are different form filter and wrapper
models and they usually seek the subset by jointly
minimizing empirical error and penalty [26]. Embedded
approaches attempt to maximize classification performance
and minimize the number of features used in a classification
or regression model. Embedded approaches are independent
of the classifier and do not need the cross-validation step,
therefore they are computationally efficient. Thus,
embedded models have the advantages of both wrapper
models and filter models [49]. There are many approaches in
embedded models, such as LASSO (least absolute shrinkage
and selection operator) [50], LARS (least angle
regression) [51], elastic net [52] and so on [53–55].

3 Online Feature Selection

Traditional feature selection mentioned above assumes that
all candidate features are available before learning starts.
However, in many real-world applications [10, 11], features
are generated dynamically, and arrive one by one or group
by group. It is hence not practical to wait until all features
have been generated before feature selection begins. This
poses great challenges to traditional feature selection
approaches, called online feature selection with streaming
features. We first give the formalization of online feature
selection with streaming features as follows.

Let X represent the data set, denoted as
X = [x1, x2, ..., xn]T ∈ Rn×d consisting of n samples
(columns) over a d-dimensional feature space
F =

[
f1, f2, ..., fd

]T ∈ Rd and let C = [c1, c2, ..., cm]T ∈ Rm

denote the class label vector. At each time j, we just get
feature f j of X and we do not know the exact number of d in
advance. So the problem is to derive a x to c mapping at
each time step, which is as good as possible using a subset
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of the features that have arrived so far.
Considering the characteristics of a feature stream, many

online feature selection approaches, including online
individual feature selection approaches and online group
feature selection approaches have been proposed to address
this problem and they are proven to be effective and efficient
with streaming features. In the following subsections, we
first introduce online individual feature selection and
summarize the related work, and then discuss online group
feature selection. Finally, we analyze these approaches.

3.1 Online Individual Feature Selection

Online individual feature selection shares the common
assumption that candidate features are generated
dynamically and arrive one at a time. More specifically,
Perkins and Theiler [14] considered the online feature
selection problem and proposed the Grafting algorithm
based on a stagewise gradient descent approach. Zhou et
al. [15] proposed two algorithms of information-investing
and alpha-investing, based on streamwise regression for
online feature selection. Wu et al. [16] presented an online
streaming feature selection framework with two algorithms
OSFS (Online Streaming Feature Selection) and fast-OSFS.
Wang et al. [56] proposed the algorithm OFS (Online
Feature Selection) learning with full inputs and OFSp
(Online Feature Selection with Partial inputs) learning with
partial inputs. Yu et al. [13] proposed the SAOLA (a
Scalable and Accurate OnLine Approach) for feature
selection. More details are as follows.

3.1.1 Grafting

Grafting [14] treats feature selection as an integral part of
learning a predictor within a regularized framework. It is
oriented to binomial classification. The objective function is
a binomial negative log-likelihood loss (BNLL) function as
shown in Eq. (1).

1
n

n∑
i=1

ln(1 + e−yi f (xi)) + λ
k∑

j=1

||w j||1 (1)

where n is the number of samples, k is the number of
selected features so far, λ is a regularization coefficient, and
w is the weight vector subject to l1regularization. When
non-zero weights w j add to the model, λ||w j|| is penalized.
So, it can only add weights to the model if the reduction in
the mean loss L outweighs the regularize penalty. This
means, feature f j can be selected if the following condition

is satisfied: ∣∣∣ ∂L
∂w j

∣∣∣ > λ (2)

Grafting operates in an incremental iterative fashion, and it
gradually builds up a feature set while training a predictor
model using gradient descent. At each iteration, a fast
gradient-based heuristic is used to identify a feature that is
most likely to improve the existing model. In order to
determine whether feature f j can be selected, it needs to
select the value of a regularization parameter λ in advance.
If a new feature f j is selected, the algorithm repeats and
reapplies the gradient test to all the selected features.
Grafting can be used with both linear and non-linear
predictor model classes, and it can be used for both
classification and regression.

3.1.2 Alpha-investing

The Alpha-investing [15] method does not need a global
model and it is one of the penalized likelihood ratio
methods. When a feature f j arrives, it is evaluated by the
p-value. The p-value presents the probability whether the
feature could be accepted or not. This algorithm uses a
threshold α j to measure the p-value of f j. If the p-value of
feature f j is bigger than α j , it will be added to the model.

Meanwhile, the threshold α j can be adaptively adjusted
each time no matter whether feature f j is selected or not.
When f j is selected, the value of w j will increase as shown
in Eq.(3).

w j+1 = w j + ∆α − α j (3)

where ∆α is the parameter controlling the false discovery
rate and w j represents the current acceptable number of
future false positives. Otherwise, if f j is discarded, w j will
decrease as shown in Eq. (4).

w j+1 = w j − α j (4)

where α j is set to the value of w j/(2 × j).
In sum, Alpha-investing can handle unknown or even

infinite sizes of candidate feature sets. Because it does not
reevaluate the selected features, it hence performs efficiently,
but it will probably perform ineffectively in the subsequent
feature selection for never evaluating the redundancy of
selected features.

3.1.3 OSFS

OSFS [16] (Online Streaming Feature Selection) provides a
framework for streaming feature selection. OSFS divides
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features into three disjoint categories: strongly relevant,
weakly relevant and irrelevant. First of all, we will give the
definitions of these three types of feature relevance.

Definition 1. [Strong relevance] A feature fi is strongly rel-
evant to C iff ∀S ⊆ F − fi s.t. P(C|S ) , P(C|S , fi).

Definition 2. [Weak relevance] A feature fi is weakly
relevant to C iff it is not strongly relevant, and ∃S ⊂ F − fi
s.t. P(C|S ) , P(C|S , fi).

Definition 3. [Irrelevance] A feature fi is irrelevant to C iff
it is neither strongly nor weakly relevant, and ∀S ⊆ F− fi s.t.
P(C|S ) = P(C|S , fi).

The OSFS framework contains two major steps: online
relevance analysis and online redundancy analysis.

• Online relevance analysis

In this step, features are divided into three categories:
strong relevance, weak relevance and irrelevance. When a
new feature arrives, the algorithm calculates its relevance to
the class attribute. If the feature is a strongly or weakly
relevant feature, it will be added to the feature subset. If the
feature is irrelevant, it will be discarded. Once a new feature
is selected, it will turn to online redundancy analysis.

• Online redundancy analysis

In this step, the algorithm dynamically identifies and
eliminates redundant features. Let BCF denote the set of the
best candidate features so far. After a new feature is
included into BCF, if a subset exists in BCF which can
make any existing feature in BCF and the class attribute C
conditionally independent, then the newly selected feature is
redundant and will be removed from BCF. The redundancy
analysis will guarantee that the newly added feature is an
optimal selection for global selected features.

The most time-consuming part of OSFS is the redundancy
analysis. When the selected feature set is large, this process
will become very inefficient and lead to a poor performance.

Fast-OSFS divides the online redundancy analysis into
two parts:

1) Determining whether an incoming new feature is
redundant. This part aims to remove a new relevant but
redundant feature. If the new feature is removed
successfully, Fast-OSFS will deal with the next arriving
feature.

2) Identifying which of the selected features may become
redundant by using the Markov blanket theory once the new
feature is added. In this part, Fast-OSFS reduces the

computational cost by only considering the subsets within
BCF that contains the new added feature instead of all
subsets within BCF.

3.1.4 SAOLA

SAOLA (Scalable and Accurate OnLine Approach) [13]
addresses two challenges in big data applications: extremely
high dimensionality and its highly scalable requirement of
feature selection. SAOLA employs novel online pairwise
comparison techniques and maintains a parsimonious model
over time in an online manner. This method is scalable on
data sets of extremely high dimensionality. SAOLA employs
a theorem as follows:

Theorem 1. With the current feature subset S ∗ti−1
at time ti−1

and a new feature fi at time ti, ∃Y ∈ S ∗ti−1
, if I( fi; C|Y) = 0

holds, then the following is achieved.

I(Y; C) > I( fi; C) and I( fi; Y) > I( fi; C) (5)

where C is the class attribute and I(A; B) means the mutual
information between A and B.

Meanwhile, there is an important equation which is used
in the algorithm as follow:

I( fi; C) > I(Y; C) and I(Y; fi) > I(Y; C) (6)

The SAOLA algorithm can be divided into three steps:

• Step 1: When a new feature fi arrives at time ti,
calculate the mutual information I( fi; C) and compare
to the threshold δ. If I( fi; C) < δ, the feature fi will be
discarded as an irrelevant feature. If not, go to step 2.
• Step 2: Evaluate whether fi should be kept given the

current feature set S ∗ti−1
. If the new feature fi satisfies

Theorem 1, it will be discarded and never considered
again. If not go to step 3.
• Step 3: Once fi is added to S ∗ti−1

, the current feature set
will be checked whether some features within it can be
removed. If ∃Y ∈ S ∗ti−1

such that Eq.(6) holds, Y is
removed.

The SAOLA algorithm performs a set of pairwise
comparisons between individual features instead of
conditioning on a set of features. This reduces the
computational cost. Meanwhile, SAOLA employs a
k-greedy search strategy to find redundant features by
checking feature subsets for each feature in the current
feature set S ∗ti−1

which make it faster than Fast-OSFS.
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3.1.5 OFS

OFS (Online Feature Selection) [56] deals with sequential
training data of high dimensionality which is different from
the above approaches. In the above works, features are
assumed to arrive one by one while all the training instances
are assumed to be available before the learning process
starts. OFS considers the problem that the training instances
arrive sequentially.

OFS considers the problem of online feature selection for
binary classification. Let {(xi, yi)|i = 1, 2, ..., n} be a sequence
of input patterns received over the trials, where each xi ∈ Rd

is a vector of d dimension and yi ∈ {−1,+1}. If d is a large
number, it needs to select a relatively small number of
features for linear classification. In each trial i, the learner
presents a classifier Li ∈ Rd that will be used to classify
instance xi by a linear function sgn(LT

i xi). It requires the
classifier Li to have at most B (B > 0 is a predefined
constant) nonzero elements instead of all the features for
classification. The goal of OFS is to design an effective
strategy that can make a small number of mistakes.

OFS (learning with full inputs) assumes that the learner is
provided with full inputs of every training instance. The goal
of OFS by learning with full inputs is to efficiently identify a
fixed number of relevant features for accurate prediction.
When a training instance (xi, yi) is misclassified, the
classifier Li will be updated by online gradient descent first.
Then the classifier will be projected to a l2 ball to ensure the
norm of the classifier is bounded. OFS will simply keep the
B elements in the resulting classifier Li+1 with the largest
absolute weights, if the classifier Li+1 has more than B
nonzero elements.

For real-world applications, the attributes of objects
might be expensive to acquire. To address this challenge,
OFS has another version, OFSp (learning partial inputs). To
tradeoff exploration and exploitation, OFSp aims at
performing online feature selection with partial input
information by employing a classic technique. It spends ε%
of trials for exploration by randomly choosing B attributes
from all d attributes. Meanwhile, the remaining (1 − ε)% of
trials on exploitation by choosing the B attributes for which
classifier Li has nonzero values.

In sum, all the approaches mentioned above can deal with
the scenarios of features arriving one by one. However, in
real-world applications, features possess certain group
structures. It is very likely to also have scenarios of
streaming group feature selection, because the features are
generated and arrived group by group. It is therefore also to

select features at group level when group structures exist. In
the next section, we summarize several online group feature
selection approaches.

3.2 Online Group Feature Selection

Online group feature selection aims to select features at the
group level. It is a new processing model. Let X represent
the data set, denoted as X = [x1, x2, ..., xn]T ∈ Rn×d

consisting of n samples (columns) over a d-dimensional
feature space F =

[
f1, f2, ..., fd

]T ∈ Rd and let
C = [c1, c2, ..., cm]T ∈ Rm denote the class label vector.
Assume G = {G1,G2, ...,Gn} represents n feature groups
without overlapping, and Gi denotes the ith feature group.
The challenge of online group feature selection is how to
simultaneously optimize selections within each group as
well as between those groups to achieve a set of groups Γti

that maximizes its predictive performance.
Several representative works include GFSSF (Group

Feature Selection with Streaming Features), OGFS (Online
Group Feature Selection) and group-SAOLA. GFSSF [17] is
an algorithm proposed for group feature selection with
streaming features and it can work at both the group and
individual feature levels. OGFS [18] formulates the problem
as online group feature selection, which can be divided into
two stages: intra-group selection and inter-group selection.
Group-SAOLA [57] is an extension of SAOLA, and it
selects feature groups which are sparse at the levels of both
features and groups simultaneously in an online manner.
More details are below.

3.2.1 GFSSF

GFSSF (Group Feature Selection with Streaming
Features) [17] performs group feature selection with
streaming features. Meanwhile, GFSSF can work at both the
group and individual feature levels for streaming feature
selection by exploiting entropy and mutual information in
information theories. GFSSF consists of the feature level
and group level selections. The approach selects features by
using the relationship between features. First of all, we will
give the definition of irrelevance, redundancy and coverage
between features. Let I(X; Y) denote the mutual information
between X and Y .

Definition 4. [Irrelevance] Given two features X and Y, X is
irrelevant to Y if and only if I(X; Y) = 0.

Definition 5. [Redundancy] Given two features X and Y, and
a set of features F, X is redundant to F for Y if and only if
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I((X; Y |F)) = 0.

Definition 6. [Coverage] Given three features X, X∗ and Y,
X covers X∗ on Y if and only if I(X∗; Y |X) = 0.

• Feature level selection

The approach processes features from the same group and
seeks the best feature subset from the arrived features so far.
When a new feature fx arrives, test whether it is relevant to
the target feature fy. If fx is irrelevant to fy, discard fx

directly. If fx can provide new information for fy that any
other formerly selected feature cannot, add fx to the subset.
If fx is redundant but it can cover some other features, then
replace these features with fx. Otherwise, fx is redundant
and will be discarded.

• Group level selection

The approach seeks a set of groups that can cover as
much uncertainty of the target feature fy as possible with a
minimum cost. That is to seek a group set Γ which is sparse
at both the group level and the individual level, by solving
the optimization problem as defined in Eq. (7).

minΓ{H(Y) − I(Γ; Y)} + {λ1|Γ|g + λ2|Γ| f } (7)

where |Γ|g is the number of groups and |Γ| f is the number of
selected features in the selected group set Γ. This is the
penalty on the number of selected groups and the number of
selected features. The group level selection is similar to the
feature level selection and the only differences are the
selection level and the penalty. If the new information of the
newly arrived group provides for Y is more than the penalty
that comes with it, it will be selected.

The framework of GFSSF is able to complete feature
selection at the individual feature level and the group level
simultaneously. After receiving new features form the
feature steam, the feature level selection is invoked to
process the newly arrived feature in the current group. When
all features of a group have arrived, the feature level
selection for this group is done. Then the group level
selection is invoked to process the new group. Thus, GFSSF
can be easily set to do feature selection at the individual
level, the group level, or both.

3.2.2 OGFS

OGFS (Online Group Feature Selection) [18] is an efficient
online feature selection framework using the prior
knowledge of group information. OGFS consists of two
stages as the intra-group feature selection and inter-group
features selection.

• Intra-group selection

This stage selects features dynamically by a criterion
based on the spectral graph theory. Given the label of the
data, two graphs Gw and Gb are created. Gw reflects the
within-class or local affinity relationship and Gb reflects the
between-class or global affinity relationship. The graphs Gw

and Gb are characterized by the weight matrices S w and S b

calculated as shown in Eq.(8) (9).

(S b)i j =

{ 1
n −

1
nl

yi = y j = l
1
n yi , y j

(8)

(S w)i j =

{ 1
nl

yi = y j = l
0 yi , y j

(9)

where nl denotes the number of data points from class l ∈
{1, 2, ..., c}.

The feature selector matrix is W = [wi, ...,wm]T ∈ Rd×m,
where d is the number of selected features and m is the
dimension of the global feature space. The data matrix
projected on the selected feature space is Z = WT X. The
best selection matrix can be achieved by maximizing the
following objective function as shown in Eq. (10).

F(WU) =
Σi j||zi − z j||2S b(i j)
Σi j||zi − z j||2S w(i j)

(10)

When a new feature fi arrives, the algorithm will
calculate the value |F(U ∪ fi) − F(U)|. If the value is bigger
than the small positive parameter λ, then feature fi is
assumed to be distinguished and selected. The intra-group
selection selects all the significant features with
distinguished ability. However, this may cause redundancy
among selected features, and therefore it turns to the
inter-group selection phase.

• Inter-group selection

This stage aims to get an optimal subset based on global
group information. Using the linear regression model Lasso
(least absolute shrinkage and selection operator), it
reformulates the function as shown in Eq. (11).

minβ̂||y − XT β̂||2 + λ||̂β||1 (11)

where ||.||2 stands for l2 norm, and ||.||1 stands for l1 norm of
a vector. λ is a parameter that controls the amount of
regularization applied to estimators, and λ > 0. The above
function can be solved efficiently by many optimization
methods. The features with non-zero coefficients will be
selected.



8
Xuegang Hu et al. A Survey on Online Feature Selection with Streaming Features

More specifically, on time step t, a group of features gt is
generated. In online intra-group selection, OGFS develops a
novel criterion based on spectral analysis which aims to
select discriminative features in gt. Each feature in gt is
evaluated individually in this stage. Then in inter-group
selection, OGFS reevaluates all the selected features so far
and discards the features which are irrelevant to the class
label. The process can be accomplished with a sparse linear
regression model Lasso.

3.2.3 Group-SAOLA

Group-SAOLA [57] extends the SAOLA algorithm and can
select feature groups which are sparse at the levels of both
features and groups. At time ti, group-SAOLA attempts to
get a solution that is sparse at the levels of both intra-groups
and inter-groups simultaneously for maximizing its
predictive performance for classification. At first, we give
the definitions of feature groups. Let I(X; Y) denote the
mutual information between X and Y .

Definition 7. [Irrelevant groups] If ∃Gi ⊂ G s.t. I(C; Gi) =
0, then Gi is considered as an irrelevant feature group.

Definition 8. [Group redundancy in inter-groups] If ∃Gi ⊂
G s.t. I(C; Gi|G −Gi) = 0, then Gi is a redundant group.

Definition 9. [Feature redundancy in intra-groups] ∀Fi ∈
Gi, if ∃S ⊂ G − Fi s.t. I(C; Fi|S ) = 0, then Fi can be
removed from Gi.

Group-SAOLA consists of three key steps:

• Step 1: At time ti, if Gi is an irrelevant group, then dis-
card it. If not, go to step 2.
• Step 2: Evaluate feature redundancy in Gi to make it as

parsimonious as possible at the intra-group level.
• Step 3: Remove redundant groups from the currently

selected groups.

3.3 Analysis

In this subsection, we will compare and analyze the
advantages and disadvantages of all online feature selection
approaches mentioned above. More details are below.

• Grafting

The advantages of Grafting are as follows [14]:
1) Grafting is an embedded feature selection approach, and

it treats the selection of features as an integral part of learning
a predictor in a regularized learning framework.

2) Grafting can discard many irrelevant and redundant
features and have a single global optimal solution, because it
is based on a stagewise gradient descent and regularized risk
minimization technique.

The disadvantages of Grafting are as follows [16, 18]:
1) Grafting needs the information of the global feature

space to choose a good value for the important
regularization parameter in advance, and it is hence weak in
the handling of streaming features.

2) When the number of features is very large, it is very
time-consuming because of the gradient retesting over all
the selected features. This causes the runtime of Grafting to
increase dramatically and eventually fail frequently.

• Alpha-investing

As compared to Grafting, Alpha-investing has the follow-
ing advantages [15, 16]:

1) Alpha-investing is a streamwise feature selection
approach, thus, it does not need to determine any prior
parameters in advance and can handle large feature sets.

2) Alpha-investing can dynamically adjust the threshold
for adding features to the model, and it is hence conducive to
reduce over fitting.

3) It is extremely easy to be implemented because Alpha-
investing just calculates featuresąŕ p-values.

Meanwhile, Alpha-investing also has the disadvantages
below [16–18]:

1) Alpha-investing does not consider the redundancy of
selected features, because it only evaluates each feature once.

2) Alpha-investing needs a threshold in advance, thus, it
cannot properly handle the original features without any prior
information about the feature structure.

3) Alpha-investing is not computationally efficient if the
size of the streaming feature set is huge and the number of
features within the current model is large, because it uses the
p-value of features. Moreover, it appears to be highly
unstable and may fail to select any features on very sparse
datasets.

• OSFS and Fast-OSFS

As compared to Grafting and Alpha-investing, OSFS and
Fast-OSFS have the following advantages [16–18]:

1) OSFS and Fast-OSFS can remove redundant features
from the selected candidates, thus, they select fewer features
than Grafting and Alpha-investing while achieving
comparable prediction accuracy. OSFS and Fast-OSFS can
make sure that the newly added feature is optimal for global
selected features so far.
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2) Fast-OSFS divides online redundancy analysis into two
parts compared to OSFS, thus, it has stronger statistical
power than OSFS and it is much faster than OSFS.
Meanwhile, when the feature space is unknown or
significantly large, Fast-OSFS has better and more stable
performance than Alpha-investing and OSFS.

Meanwhile, OSFS and Fast-OSFS also have some
disadvantages below [17, 18]:

1) Considering the online redundancy analysis step of
OSFS, the running time of OSFS is linear to the number of
total features, but it is exponential to the number of features
to be handled.

2) OSFS and Fast-OSFS are online individual feature
selection approaches, therefore, they miss the group
structure among features in some applications.

• SAOLA

SAOLA addresses two challenges in many big data
applications: extremely high dimensionality and its highly
scalable requirement of feature selection, and it hence has
the advantages as follows [13]:

1) By using the strategy of online pairwise comparisons,
SAOLA can handle a large size of feature space and keep
scalable on data sets of extremely high dimensionality.

2) SAOLA employs a k-greedy search strategy to filter out
redundant features, and it is hence conducive to select fewer
features and perform faster.

Meanwhile, the disadvantage of SAOLA is that it is hard
to get an optimal value for the relevance threshold.

• OFS and OFSp

OFS and OFSp have advantages as follows [56]:
1) OFS can achieve more and more significance of the

gain with the training instances received, thus, it can work
efficiently for large-scale data mining tasks.

2) OFS can select the exact number of features specified
by users, because online learners of OFS and OFSp allow
maintaining a classifier involved only a small and fixed
number of features.

3) By using sparsity regularization and truncation
techniques, OFS can guarantee that the sparsity level of the
learner keeps unchanged during the entire online learning
process.

Meanwhile, OFS and OFSp have the following
disadvantages.

1) The selected features are not optimal for the global
feature space arrived so far, because OFS and OFSp do not
remove redundant features from the selected candidates.

2) OFS and OFSp miss the group structure among features
in some applications, because they are learned on streaming
features individually. .

• GFSSF

As compared to the above algorithms, GFSSF has the fol-
lowing advantages [17]:

1) By using feature group structures information, GFSSF
can effectively identify relevant features from important
groups and select features at both the group and individual
levels.

2) GFSSF can select features by treating each feature as
an individual group, thus, it can work without using feature
group structures and it can be easily configured to do feature
selection in the group level, in the individual feature level, or
in both levels.

3) GFSSF removes redundant features and selects fewer
features, so it is comparable or superior to the algorithms that
do not deal with redundancy.

• OGFS

OGFS has the advantages below [18]:
1) OGFS can perform better than those algorithms

without considering the information of the group structure,
because it uses the group structure information as a type of
prior knowledge on the features.

2) OGFS-Intra is a filter model, thus, it obtains a high effi-
ciency and is linear with the number of features.

3) OGFS reevaluates selected features in the inter-group
selection, so it is conducive to select sufficient features with
discriminative power.

4) OGFS can get a better feature subset, because it facili-
tates the relationship of features within groups and the corre-
lation between groups.

Meanwhile, the disadvantage of OGFS is that as the intra-
group selection of OGFS needs to choose a small number
positive parameters in advance, it is hard to choose an optimal
value without any prior information.

• Group-SAOLA

As an extension of SAOLA, group-SAOLA has the
advantages as follows [57]:

1) By using the strategy of online pairwise comparisons,
group-SAOLA can handle a large size of feature space and is
scalable to data sets with extremely high dimensionality.

2) Group-SAOLA can remove redundancy in intra-groups
and inter-groups, thus, it can select feature groups which are
sparse at the levels of both features and groups.
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Meanwhile, the disadvantage of group-SAOLA is similar
to SAOLA, that is, it is hard to get an optimal value of the
relevance threshold.

4 Experiments

In this section, we first summarize several benchmark data
sets in feature selection. Then we introduce evaluation
measures and a Library of Online streaming Feature
Selection (LOFS) [58]. Finally, we conduct experiments on
online feature selection algorithms mentioned above.

4.1 Experimental Data Sets for Online Feature Selection

4.1.1 NIPS 2003 feature selection challenge

The NIPS 2003 challenge in feature selection 1) is to find
feature selection algorithms that significantly outperform
methods using all features [16]. It contains five benchmark
datasets including: ARCENE, MEDELON, GISETTE,
DEXTER and DOROTHEA formatted for that purpose . To
facilitate entering results for all five datasets, all tasks are
two-class classification problems. A brief introduction of
these five datasets is as follows:

• ARCENE: The task of ARCENE is to distinguish
cancer versus normal patterns from mass-spectrometric
data. This is a two-class classification problem with
continuous input variables.
• GISETTE: The task of GISETTE is to discriminate

between confusable handwritten digits, the four and the
nine. This is a two-class classification problem with
sparse continuous input variables.
• DEXTER: The task of DEXTER is to filter texts about

"corporate acquisitions". This is a two-class
classification problem with sparse continuous input
variables.
• DORTHEA: The task of DOROTHEA is to predict

which compounds bind to Thrombin. This is a
two-class classification problem with sparse binary
input variables.
• MADELON: The task of MADELON is to classify

random data. This is a two-class classification problem
with sparse binary input variables.

Table 1 (AT: attribute type, NI: number of instances, NF:
number of features) shows more details of the above five
benchmark data sets.

1) http://clopinet.com/isabelle/Projects/NIPS2003/

Table 1 Data sets of NIPS 2003 feature selection challenge

Data Set AT NI NF

ARCENE Non sparse 100 10000
MEDELON Non sparse 2000 500
GISETTE Non sparse 6000 5000
DEXTER Sparse Integer 300 20000
DOROTHEA Sparse Binary 800 100000

4.1.2 UCI benchmark datasets

The UCI Machine Learning Repository 2) is a collection of
databases, domain theories, and data generators that are used
for empirical analysis of machine learning
algorithms [16–18, 56]. By September 2015, it has 332 data
sets . We introduce below some data sets used in online
feature selection algorithms mentioned in Section 3.

• IONOSPHERE: Classification of radar returns from the
ionosphere.
• SPECTF Heart: Data on cardiac Single Proton Emission

Computed Tomography (SPECT) images. Each patient
is classified into two categories: normal and abnormal.
• ARRHYTHMIA: Distinguish between the presence and

absence of cardiac arrhythmia and classify it into one of
the 16 groups
• NORTHIX: Northix is designed to be a schema

matching benchmark problem for data integration of
two entity relationship databases.
• ISOLET: Predict which letter-name was spoken, a sim-

ple classification task.

Table 2 (AT: attribute type, NI: number of instances, NF:
number of features) shows more details of the above UCI
benchmark data sets.

Table 2 Data sets of UCI benchmarks
Data Set AT NI NF

IONOSPHERE Integer Real 351 34
SPECTF Integer 267 44
ARRHYTHMIA Categorical Integer

Real
452 279

NORTHIX Integer Real 115 200
ISOLET Real 7797 617

4.1.3 MLDATA

The MLDATA.org 3) is a web site built as a repository for
machine learning data [16]. This project is supported by
PASCAL (Pattern Analysis, Statistical Modeling and

2) http://archive.ics.uci.edu/ml/datasets.html
3) http://www.mldata.org/repository/data/
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Computational Learning). By September 2015, it has 861
data sets . We introduce below some data sets used in online
feature selection algorithms mentioned in Section 3.

• DLBCL Tumor from Harvard: There are two kinds of
classifications about diffuse large b-cell lymphoma
(DLBCL) addressed in the publication.
• LUNG Cancer (Michigan): 86 primary lung

adenocarcinomas samples and 10 non-neoplastic lung
samples are included. Each sample is described by
7129 genes.
• OVARIAN Cancer (NCI PBSII Data): Ovarian cancer

due to family or personal history of cancer.

Table 3 (AT: attribute type, NI: number of instances, NF:
number of features) shows the details of these three data sets.

Table 3 Date sets of MLDATA
Data Set AT NI NF

DLBCL Integer String 77 7130
LUNG Floating Point In-

teger String
96 7130

OVARIAN Floating Point In-
teger String

253 15155

4.1.4 CIFAR-10 and CIFAR-100

The CIFAR-10 [18, 56] and CIFAR-100 are labeled subsets
of the 80 million tiny images dataset 4). They were collected
by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.

The CIFAR-10 dataset consists of 60000 32x32 color
images in 10 classes, with 6000 images per class. There are
50000 training images and 10000 test images. The dataset is
divided into five training batches and one testing batch, each
with 10000 images. The testing batch exactly contains 1000
randomly-selected images from each class. The training
batches contain the remaining images in random order, but
some training batches may contain more images from one
class than another. Between them, the training batches
exactly contain 5000 images from each class.

This CIFAR-100 is just like the CIFAR-10, except it has
100 classes containing 600 images each. There are 500
training images and 100 testing images per class. The 100
classes in the CIFAR-100 are grouped into 20 super-classes.

4.1.5 CALTECH-101 and CALTECH-256

The CALTECH-101 [18] is a data set of digital images
which was collected in September 2003 by Fei-Fei Li,

4) http:// www.cs.toronto.edu/ kriz/cifar.html

Marco Andreetto, and Marc ’Aurelio Ranzato 5). It contains
9144 pictures which belong to 101 categories. There are
about 40 to 800 images per category and most categories
have about 50 images. The size of each image is roughly
300 x 200 pixels. It is intended to facilitate Computer Vision
research and techniques, and it is most applicable to
techniques involving image recognition classification and
categorization.

The CALTECH-256 is the latest dataset in the same web-
site. It contains 30608 pictures which belong 256 categories.
There are at least 80 images per category.

4.2 Evaluate Measures

There are three popular evaluation measures used in online
feature selection [16–18], including:

• Compactness: the proportion or number of selected fea-
tures.
• Prediction Accuracy: the percentage of the correctly

classified testing instances which are previously
unseen.
• Runtime: the time consumption of the algorithms run on

a data set, generally in seconds.

4.3 Library Software

LOFS [58] (Library of Online streaming Feature Selection)
is the first comprehensive open-source library for use in
MATLAB that implements the state-of-the-art algorithms of
online streaming feature selection. By using the library,
researchers perform comparisons between new and existing
methods .

LOFS contains three modules: CM (Correlation Measure),
Learning and SC (Statistical Comparison).

• CM module: the library provides four measures to
calculate correlations between features, including
Chi-square test, G2 test, the Fisher’s Z test and mutual
information.
• Learning module: it consists of two sub modules, LFI

(Learning Features added Individually) and LGF
(Learning Grouped Features added sequentially). The
LFI module includes Alpha-investing, OSFS,
Fast-OSFS and SAOLA, while the LGF module
provides the group-SAOLA algorithm.
• SC module: a series of performance evaluation metrics,

such as prediction accuracy, kappa statistic,
compactness. In order to conduct and statistical

5) http://www.vision.caltech.edu/Image_Datasets/Caltech101/
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comparisons of algorithms over multiple data sets, this
module also conducts the Friedman test and Nemenyi
test.

4.4 Empirical Results

By using LOFS, we compare online feature selection
algorithms on several benchmark datasets. MEDELON,
DEXTER and DOROTHEA are from the NIPS 2003
challenge in feature selection (and also can be found in UCI
benchmark datasets), LEUKEMIA is from the MLDATA,
and NEWS20 and WEBSPAM with extremely high
dimensionality are available at the Libsvm data set website
6). Details of these data sets are shown in Table 4 (NI:
number of instances, NF: number of features, NT: number of
testing instances).

Table 4 Benchmark data sets
Data Set NI NF NT

MEDELON 500 2,000 600
LEUKEMIA 7,129 48 24
DEXTER 20,000 300 300
DOROTHEA 100,000 800 300
NEWS20 1,355,191 9,996 10,000
WEBSPAM 16,609,143 20,000 78,000

We use two classifiers KNN and J48 provided in the
Spider Toolbox 7) to evaluate a selected feature subset in
experiments. Meanwhile, we compare these algorithms in
section 3 with three evaluate measures, including prediction
accuracy, number of selected features and running time. All
experiments are conducted on a computer with Inter(R)
i5-3470S 2.9GHz, and 8GB memory. More details are as
follows.

4.4.1 Comparison of Online Individual Feature Selection
Approaches

In this subsection, we select four state-of-the-art algorithms
of online individual feature selection, such as
Alpha-investing, Fast-OSFS, OFS and SAOLA in our
experiments. The value of k for the KNN classifier is set to
1. The parameter for SAOLA is set to 0 for discrete data,
and the significance level on SAOLA is set to 0.01 for
Fisher’s Z-test for continuous data [57]. The significance
level for Fast-OSFS is set to 0.01 and parameters for
Alpha-investing are set to the optimal values used in [15].
OFS adopts a user-defined parameter k to control the size of

6) http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets
7) http://people.kyb.tuebingen.mpg.de/spider

the selected feature subset. We set k to the top of 5, 10,
15,..., 100, and then select the feature set with the highest
prediction accuracy as the experimental results.

Table 5 Prediction accuracy(J48)

Data Set Alpha-
investing

Fast-OSFS OFS SAOLA

MEDELON 0.607 0.610 0.637 0.608
LEUKEMIA 0.667 0.958 0.958 0.958
DEXTER 0.500 0.820 0.567 0.813
DOROTHEA 0.934 0.937 0.937 0.934
NEWS20 - - 0.733 0.827
WEBSPAM - - 0.969 0.961

Table 6 Prediction accuracy(KNN)

Data Set Alpha-
investing

Fast-OSFS OFS SAOLA

MEDELON 0.577 0.528 0.643 0.562
LEUKEMIA 0.625 0.792 0.875 0.917
DEXTER 0.500 0.780 0.540 0.760
DOROTHEA 0.740 0.946 0.909 0.920
NEWS20 - - 0.688 0.776
WEBSPAM - - 0.952 0.953

Table 7 Number of selected features
Data Set Alpha-

investing
Fast-OSFS OFS SAOLA

MEDELON 4 3 65 3
LEUKEMIA 2 5 45 17
DEXTER 1 9 85 21
DOROTHEA 113 5 60 63
NEWS20 - - 85 212
WEBSPAM - - 85 51

From Tables 5-8, we have the following observations.

• Alpha-investing has the lowest accuracy among all
these algorithms. When the size of features is less than
1,000, OFS performs best. While the size of features
varies from 1,000 to 1,000,000, Fast-OSFS is superior
to other competing algorithms. If the size of features is
bigger than 1,000,000 (NEWS20 and WEBSPAM), the
notation "-" denotes that Alpha-investing and
Fast-OSFS fail on these data sets because of expensive
time cost. These results validate that OFS and SAOLA
can deal with extremely high dimensionality feature
selection problems. When the size of features is bigger
than 10,000,000, OFS is superior to SAOLA.
• From Table 7, we can see that Alpha-investing and

Fast-OSFS select fewer features than OFS and SAOLA.
With the increasing of the size of features, OFS roughly
selects the same size of final feature subset. For
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Table 8 Running time(seconds)

Data Set Alpha-
investing

Fast-OSFS OFS SAOLA

MEDELON 0.1 0.1 0.1 0.1
LEUKEMIA 1 2 0.1 2
DEXTER 6 4 1 3
DOROTHEA 461 379 14 62
NEWS20 - - 1,637 1009
WEBSPAM - - 19,443 1556

SAOLA, the number of selected features increases
stably as the size of candidate features increases.
• From Table 8, we can find that all these algorithms can

efficiently complete the selection if the size of
candidate features is less than 10,000. If the size of
features is bigger than 1,000,000, the running time of
SAOLA increases stably, and for OFS, it increases
dramatically.

In sum, Alpha-investing and Fast-OSFS select fewer
features and Fast-OSFS can achieve competitive accuracy if
the dimensionality of candidate features is not extremely
high. OFS and SAOLA can address the challenge of
extremely high dimensionality and SAOLA is the most
stable algorithm among all aforementioned online feature
selection approaches.

4.4.2 Comparison of Online Group Feature Selection

In this subsection, we select two state-of-the-art online
group feature selection algorithms including group-SAOLA
and OGFS in our experiments. The value of k for the KNN
classifier is set to 1. For group-SAOLA, the parameter is the
same as the SAOLA algorithm. The parameters for OGFS
are set to the values used in [18]. For data sets MEDELON,
LEUKEMIA, DEXTER and DOROTHEA, we randomly
divide each data set into 100 feature groups without
overlapping. For NEWS20 and WEBSPAM, each data set is
randomly divided into 10,000 feature groups without
overlapping. The results are as shown in Tables 9-10.

Table 9 Prediction accuracy

J48 KNN
Data Set group-

SAOLA
OGFS group-

SAOLA
OGFS

MEDELON 0.611 0.515 0.532 0.492
LEUKEMIA 0.958 0.729 0.983 0.779
DEXTER 0.843 0.556 0.795 0.549
DOROTHEA 0.936 0.903 0.918 0.869
NEWS20 0.819 0.530 0.750 0.506
WEBSPAM 0.934 0.762 0.938 0.938

Table 10 Running time and Number of selected features/groups

running time (second) selected features/groups
Data Set group-

SAOLA
OGFS group-

SAOLA
OGFS

MEDELON 0.1 0.1 2/2 15/13
LEUKEMIA 3 1 16/14 66/47
DEXTER 2 4 21/19 72/49
DOROTHEA 25 24 41/27 126/67
NEWS20 2,341 1,150 140/140 192/192
WEBSPAM 3,275 22,790 17/17 401/395

From Tables 9 and 10, we can conclude as follows.

• From Table 9, group-SAOLA is better than OGFS in
prediction accuracy.
• From Table 10, group-SAOLA is more stable than

OGFS in running time, especially when the
dimensionality is extremely high. Meanwhile,
group-SAOLA selects fewer features and groups but
performs better. These results validate that
group-SAOLA is more efficient.

5 Challenging Issues for Online Feature
Selection

In spite of the rapid development and wide application of
feature selection in many fields, there are still several open
issues in online feature selection with streaming features as
follows.

1) Existing online feature selection algorithms mainly
focus on the handling of single label classification. However,
in many scenarios, the instances may have two or more
labels. Thus, how to handle online feature selection for
multi-label data is a challenging issue.

2) In real-world online applications, the quality of data
cannot be guaranteed, such as lack of attribute values, noisy
data and so on. Thus, how to select high quality features
from a feature stream is another challenging issue.

3) With the rapid growth of the amount of data,
centralized online feature selection algorithms will become
increasingly unable to meet the requirements of
computational performance, thus, distributed online feature
selection algorithms will become another challenge in the
future.
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6 Conclusion

In this paper, we reviewed the area of online feature
selection with streaming features. After a brief introduction
of the traditional feature selection approaches, we focus on
the latest development of online feature selection with
streaming features. We summarize and analyze several
representative online individual feature selection and online
group feature selection algorithms. Then we summarize
several benchmark data sets and evaluation measures
popularly used in online feature selection algorithms, a
library of online streaming feature selection (LOFS) and
give the experimental results with some of these online
feature selection algorithms. Finally, we address some new
challenges of online feature selection in the future work.
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