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Abstract— Traditional feature selection methods assume that
all data instances and features are known before learning.
However, it is not the case in many real-world applications
that we are more likely faced with data streams or feature
streams or both. Feature streams are defined as features that flow
in one by one over time, whereas the number of training examples
remains fixed. Existing streaming feature selection methods focus
on removing irrelevant and redundant features and selecting
the most relevant features, but they ignore the interaction
between features. A feature might have little correlation with
the target concept by itself, but, when it is combined with
some other features, they can be strongly correlated with the
target concept. In other words, the interactive features contribute
to the target concept as an integer greater than the sum of
individuals. Nevertheless, most of the existing streaming feature
selection methods treat features individually, but it is necessary to
consider the interaction between features. In this article, we focus
on the problem of feature interaction in feature streams and
propose a new streaming feature selection method that can select
features to interact with each other, named Streaming Feature
Selection considering Feature Interaction (SFS-FI). With the
formal definition of feature interaction, we design a new metric
named interaction gain that can measure the interaction degree
between the new arriving feature and the selected feature subset.
Besides, we analyzed and demonstrated the relationship between
feature relevance and feature interaction. Extensive experiments
conducted on 14 real-world microarray data sets indicate the
efficiency of our new method.

Index Terms— Feature interaction, feature selection, interac-
tion gain, streaming feature selection.

I. INTRODUCTION

THE era of big data is accumulated challenging state-of-
the-art machine learning techniques to efficiently produce

useful results on such high-dimensional data sets [1]. Feature
selection aims to select a minimal size subset of the feature
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space, which can retain the optimum salient characteristics
necessary from the original data sets [2]. With the removal
of noisy, irrelevant, and redundant features, machine learning
can benefit significantly from using only relevant data, such
as better performance, less running time, and improved com-
prehensibility [3]–[7].

Traditional feature selection methods assume that all fea-
tures are presented to a learner before learning takes place.
Nevertheless, in many real-world applications, not all features
can be presented before learning, and we are more likely
faced with data streams or feature streams or both [8]–[10].
For example, Twitter produces more than 500 million tweets
every day, and a large number of slang words (features)
are continuously being generated [11]. Feature streams are
defined as features that flow in one by one over time, whereas
the number of training examples is fixed [12]. Streaming
feature selection that deals with feature streams in an online
manner has attracted much attention in recent years [12]–[20].
It presents great advantages when handling extremely high-
dimensional data sets, such as low time and space consump-
tion [21]. Two representative methods of them are online
streaming feature selection (OSFS) [12] and a Scalable and
Accurate Online feature selection Approach (SAOLA) [14].
OSFS selects strongly relevant and nonredundant features on
the fly and contains two major steps: online relevance analysis
(discarding irrelevant features) and online redundancy analysis
(eliminating redundant features). To tackle the challenges in
online feature selection from extremely high-dimensional data,
SAOLA employs novel online pairwise comparison techniques
and maintains a parsimonious model over time in an online
manner.

In general, feature selection focuses on removing irrelevant
and redundant features from the feature space and selecting the
most relevant and informative ones [22]. An important but usu-
ally being ignored issue is feature interaction [23]. Interactive
features are those that appear to be low relevant or even irrele-
vant with the class individually, but, when it is combined with
other features, it may highly correlate to the class [24]–[26].
In other words, interactive features contribute to the class
as an integer greater than the sum of individuals. A special
case for this is the XOR problem. More precisely, there are
two features f1 and f2 and the class c, where c = f1 ⊕ f2

and ⊕ represents the XOR logic function. f1 or f2 does not
carry any information about the class individually, but the two
features completely determine the class if they are combined.
A more common example is the Monks1 data set from the
UCI Machine Learning Repository, which has 432 instances
and six category features a1, a2, . . . , a6. The target concept c
is defined by c = (a1 = a2) ∨ (a5 = 1). We use mutual
information (MI) [27] to calculate the information between
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features and get I (a1; c) = 0.0753, I (a2; c) = 0.0058, and
I (a5; c) = 0.2870. However, I ({a1, a2}; c) = 0.5147 >
I (a1; c) + I (a2; c) and I ({a1, a2, a5}; c) = 1 > I (a1; c) +
I (a2; c) + I (a5; c), which means that the combination of
features a1, a2, and a5 can contribute more information than
the sum of each features. Besides, for the real-world applica-
tions of high-throughput microarray data, finding interacting
features is to search a small number of pertinent genes from
hundreds of thousands of ones that reflecting the immune
response mechanism involving both antigen presentation and
immunoproteasome pathways [24].

For streaming feature selection, we cannot require the
domain knowledge in advance and do not know the infor-
mation of the entire feature space before learning. Most of the
existing streaming feature selection methods, such as OSFS
and SAOLA mentioned earlier, treat features individually
and do not consider the interaction among features. Besides,
many effective and efficient learning algorithms assume the
independence of features. However, they may fail badly when
the degree of feature interaction becomes critical [23].

Motivated by this, we focus on the problem of feature
interaction and propose a new streaming feature selection
method that can select features to interact with each other,
named Streaming Feature Selection considering Feature Inter-
action (SFS-FI). The main contributions of this article are as
follows.

1) We give the formal definition of feature interaction.
Meanwhile, we analyze and demonstrate the relationship
between feature relevance and feature interaction.

2) We provide a systematic analysis of two-way interaction,
three-way interaction, and four-way interaction in fea-
ture selection. Meanwhile, we demonstrate that four-way
interaction can be converted into the sum of some three-
way interactions. Thus, we can approximate a higher-
way interaction by considering the combination of all
possible three-way interactions.

3) A new metric named interaction gain was proposed,
which can measure the interaction degree between the
new arriving feature and the selected feature subset.
Besides, with the definitions of positive interaction and
negative interaction, we present a new streaming feature
selection method that can guarantee the selected features
relevant to the class and interact with each other.

4) To investigate the effectiveness of our new method,
experimental results conducted on 14 real-world
microarray data sets indicate that SFS-FI can select
relevant and interactive features on the fly.

The rest of this article is organized as follows. In Section II,
we describe the related work. In Section III, with the def-
initions of feature relevance, redundancy, and interaction,
we analyze and demonstrate the relationship between feature
relevance and feature interaction. In Section IV, we give
the problem formalization of streaming feature selection and
propose a new algorithm that considers feature interaction
during streaming feature selection. Experimental analyses are
presented in Section V. Finally, we make a brief conclusion
in Section VI.

II. RELATED WORK

Feature selection has been studied for decades and can be
broadly classified into three categories: filter, wrapper, and
embedded [2].

Filter methods evaluate the feature importance according to
certain criteria that are independent of any learning algorithms.
For example, by using the concept of distance correlation,
Kundu and Mitra [28] developed a novel similarity-based
feature selection algorithm that does not need an exhaustive
traversal of the search space. Yang et al. [29] investigated
the incremental perspective for fuzzy rough set-based feature
selection, which assumes that data can be presented in the
sample subsets one after another. Wrapper methods evaluate
the quality of the selected features with a predefined learning
algorithm. The article [30] describes a novel wrapper feature
selection algorithm for classification problems, which utilizes
a genetic algorithm to wrap extreme learning machine to
search for the optimum subsets in the huge feature space.
Embedded methods perform feature selection in the process
of model construction. The representative methods of embed-
ded mode are regularized regression-based feature selection
algorithms. Pang et al. [31] proposed a novel framework
to solve the original l2,0-norm constrained sparse regression-
based feature selection problem. Besides, Bing et al. [32]
present a comprehensive survey of the state-of-the-art work on
evolutionary computation for feature selection and identified
the contributions of these different algorithms.

For traditional feature selection methods, most of them
concentrate on removing irrelevant and redundant fea-
tures or selecting the most relevant features from a
given candidate feature space. Among them, there are few
works focusing on the feature interaction. More specifically,
Jakulin and Bratko [33] focused on the assumption of inde-
pendence of attributes for many effective and efficient learning
algorithms and pointed out that these methods may fail badly
when the degree of attribute dependencies becomes critical.
They first formally define the degree of interaction between
attributes through the deviation of the best possible “voting”
classifier from the true relation between the class and the
attributes in a domain. Furthermore, they [23] introduced
an operational definition of a generalized n-way interaction
by highlighting two models: the reductionistic part-to-whole
approximation, where the whole model is reconstructed from
models of the parts, and the holistic reference model, where
the whole is directly modeled. An interaction is deemed
significant if these two models are significantly different.
Zhao and Liu [24] took up the challenge of feature interaction
to design a special data structure for the feature quality eval-
uation and employ an information-theoretic feature ranking
mechanism to efficiently handle feature interaction in the sub-
set selection. Zeng et al. [26] proposed a novel feature selec-
tion algorithm considering feature interaction. They defined
the interaction weight factor that can reflect the information
whether a feature is redundant or interactive and designed an
Interaction Weight-based Feature Selection (IWFS) algorithm.
However, all these methods are designed for traditional feature
selection, and they cannot be applied in the streaming feature
selection directly.
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Contrary to traditional feature selection, streaming feature
selection assumes that the features arriving one by one over
time, and we cannot require the whole feature space before
learning. There are two major reasons for streaming feature
selection: 1) the feature space is unknown or even infinite
and 2) the feature space is known, but feature streaming
offers many advantages. In order to handle this problem, many
research works were proposed in recent years.

More specifically, Perkins and Theiler [34] first considered
the problem of online feature selection and proposed the
Grafting algorithm based on a stagewise gradient descent
approach. Grafting treats feature selection as an integral
part of learning a predictor within a regularized framework.
Zhou et al. [35] proposed two algorithms of information-
investing and alpha-investing, based on streamwise regression
for online feature selection. Alpha-investing does not need a
global model, and it is one of the penalized likelihood ratio
methods. Wu et al. [12] presented an OSFS framework with
two algorithms called OSFS and fast-OSFS. OSFS contains
two major steps, including online relevance analysis (dis-
carding irrelevant features) and online redundancy analysis
(eliminating redundant features). Yu et al. [14] proposed the
SAOLA approach for high-dimensional data. SAOLA employs
novel online pairwise comparison techniques and maintains a
parsimonious model over time in an online manner. Eskandari
and Javidi [17] proposed a rough set-based method for OSFS,
named OS-NRRSARA-SA. Unlike the classical Rough Set-
based attribute reduction methods that only use the information
contained in the positive region, OS-NRRSARA-SA considers
the boundary and positive regions. Zhou et al. [16] proposed a
new OSFS method for high-dimensional and class-imbalanced
data, called K-OFSD. K-OFSD uses the dependence between
condition features and decision classes for feature selection.
Zhou et al. [18] proposed a new OSFS method OFS-A3M
based on a new neighborhood rough set relation with adaptive
neighbors. With the maximal-dependence, maximal-relevance,
and maximal-significance evaluation criteria, OFS-A3M can
select features with high correlation, high dependence, and
low redundancy. Rahmaninia and Moradi [19] considered the
challenges of high computational cost, the stability of the gen-
erated results, and the size of the final feature subset in OSFS
and proposed two new methods called OSFSMI and OSFSMI-
k. These two methods employ MI in a streaming manner to
evaluate the relevancy and redundancy of features. In terms
of neighborhood rough set theory, Zhou et al. [20] proposed
a new OSFS method based on adaptive density neighborhood
relation, named OFS-Density. By the density information of
the surrounding instances and the fuzzy equal constraint, OFS-
Density can select features with low redundancy. However, all
these abovementioned methods consider the streaming features
individually and ignore the problem of feature interaction
during streaming feature selections.

III. DEFINITIONS OF RELEVANCE, REDUNDANCY,
AND INTERACTION

We summarize some notations used in this article
in Table I.

TABLE I

SUMMARY ON MATHEMATICAL NOTATION

Features in C can be categorized into three disjoint groups,
namely, strong relevance, weak relevance and irrelevance as
follows [36].

Definition 1 (Strong Relevance): Given C and D, f ∈ C ,
f is strongly relevant to D iff ∀S ⊆ C\{ f } s.t. P(D|S) �=
P(D|S, f ).

Definition 2 (Weak Relevance): Given a condition feature
space C and a decision attribute set D, f ∈ C , f is weakly
relevant to D iff it is not strongly relevant and ∃S ⊂ C\{ f }
s.t. P(D|S) �= P(D|S, f ).

Definition 3 (Irrelevance): Given a condition feature space
C and a decision attribute set D, f ∈ C , f is irrelevant to D
iff it is neither strongly nor weakly relevant and ∀S ⊆ C\{ f }
s.t. P(D|S) = P(D|S, f ).

Based on the Markov blankets, Yu and Liu [37] further
divided weakly relevant features into redundant and nonre-
dundant features.

Definition 4 (Markov Blanket): A Markov blanket of fea-
ture f , denoted as M ⊆ C\{ f }, makes all other features
independent of f given M , that is, ∀Y ∈ C\(M ∪ { f }) s.t.
P( f |M, Y ) = P( f |M).

Definition 5 (Redundancy): A feature f ∈ C is a redundant
feature, and hence, it should be discarded from C if it has a
Markov blanket within C .

All these definitions mentioned earlier just consider the rela-
tionship between a single feature f and the class attribute D.
However, features may contribute to the class by groups, and
there exist interactions between them.

Let us use the data set Monks1 as an example to illustrate
the problem of feature interaction. Meanwhile, we use MI to
calculate the information between features. We calculate some
values as follows:

I (a1; c) = 0.0753, I (a2; c) = 0.0058

I (a3; c) = 0.0047, I (a4; c) = 0.0263

I (a5; c) = 0.2870, I (a6; c) = 7.5786e − 04

I ({a1, a2}; c) = 0.5147 > I (a1; c) + I (a2; c) = 0.0811

I ({a1, a4}; c) = 0.0968 < I (a1; c) + I (a4; c) = 0.1016

I ({a1, a5}; c) = 0.3616 < I (a1; c) + I (a5; c) = 0.3623

I ({a1, a2, a5}; c) = 1 > I (a1; c) + I (a2; c) + I (a5; c)

= 0.3681
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I ({a1, a2, a3, a5}; c) = 1 > I (a1; c) + I (a2; c)

+ s I (a3; c) + I (a5; c) = 0.3728

I ({a1, a2, a3, a4, a5}; c) = 1 > I (a1; c) + I (a2; c)

+ I (a3; c) + I (a4; c) + I (a5; c)

= 0.3991.

From these computing results, we can observe that the
following holds.

1) For some feature combinations, such as {a1, a2} and
{a1, a2, a5}, the values of these combinations are bigger
the sum of individual features, which means that these
features can contribute the class greater as an integral.
In such a case, we can say that there is an interaction
between these features. For some others, such as {a1, a4}
and {a1, a5}, the values of these combinations are smaller
than the sum of individual features. Thus, not all feature
combinations have interaction between them.

2) For {a1, a2, a3, a5} and {a1, a2, a3, a4, a5}, the informa-
tion of integral is also more than the sum of individuals.
However, the remove of features a3 and a4 will not
decrease the information of these two combinations.
Then, a3 and a4 are redundant features to the combina-
tions. Thus, for an interactive feature combination, each
of the features should be indispensable.

Therefore, for interactive features, the information of the
combined feature set is more than the sum of each feature.
Meanwhile, each feature in the interactive feature set should
be indispensable. Based on this, we give the formal definition
of feature interaction as follows.

Definition 6 (Feature Interaction): Given C and D, I NT
is a nonempty feature set, and I NT ⊂ C . If P(D|I NT ) >∑

f ∈I NT P(D| f ) and for ∀ f � ∈ I NT , P(D|I NT \{ f �}) <
P(D|I NT ), then features in I NT are said to have an inter-
action with each other on D, and we call I NT an interactive
feature set.

Theorem 1: Given I NT and D, f ∈ I NT . If I NT is an
interactive feature set, then f is strong relevant to D.

Proof 1: Because I NT is an interactive feature set, for
∀ f ∈ I NT and S = I NT \{ f }, P(D|I NT ) = P(D|S, f ) >
P(D|S), and P(D|S, f ) �= P(D|S). Thus, f is strong relevant
to D.

According to Theorem 1, for a feature space I NT ∪ D,
if I NT is an interactive feature set, all the features in I NT
are strong relevant features.

Theorem 2: Given C and D, f ∈ C . If ∃I NT ⊆ C( f ∈
I NT and |I NT | ≥ 2) is an interactive feature set, then f is
relevant to D.

Proof 2: Suppose that S = I NT \{ f }, and S ⊂ C\{ f }.
Because I NT is an interactive feature set, P(D|S, f ) >
P(D|S), and P(D|S, f ) �= P(D|S). Thus, f is relevant to D.

According to Theorem 2, for a feature f ∈ C , if there exist
one more features in C that is interactive with f , then f is a
relevant feature.

A given feature is relevant to the class when either individ-
ually or combined with other features, and it provides infor-
mation about D. Selecting interactive features can reveal the
implicit relationships in the given data sets. Ideally, we wish

that the selected feature subset is an interactive feature set, and
it can provide the maximal information about D. However,
in real-world applications, it is unrealistic to guarantee that
every feature in the selected feature set is strongly relevant
to D. Meanwhile, the formal definitions of relevance and
irrelevance are hard to apply on high-dimensional data sets
directly as we cannot test all the subsets in C . Thus, we need
to design a new method that can efficiently select features
relevant to the class and interact with other features.

IV. OUR NEW ONLINE FEATURE STREAMS

SELECTION APPROACH

In this article, we focus on the problem of feature interaction
during streaming feature selection. We first give the problem
formalization of streaming feature selection. Then, we give a
systematic analysis of n-way interaction in feature selection
and point out the neglected issues in existing feature selection
methods. Finally, we propose the designed new metric named
interaction gain and present a new streaming feature selection
approach considering feature interaction within the selected
feature subset.

A. Problem Formalization

Let SFS = (C, D, h, t) denote a streaming feature selection
framework. C = [x1, x2, . . . , xn]T is the condition feature set
that contains n instances. D is the decision attribute consisted
of n samples over the class labels L = {l1, l2, . . . , lk}, where
li denotes the value of a class label and k is the number
of distinct class labels. At each time stamp t , we get a new
feature ft without knowing the exact number of feature space
in advance. With the selected feature subset St−1 after time
stamp t − 1 and the new arriving feature ft at time stamp t ,
the problem of streaming feature selection is to select a subset
of St−1 ∪ { ft }, which can make the mapping

ht : xi → L (1)

“as good as possible” according to certain evaluation criteria.
Most of the existing streaming feature selection methods

consist of two main components: 1) irrelevant features dis-
carding/relevant features selecting and 2) redundant features
eliminating. Suppose that the new arriving feature is ft at time
stamp t . In the first step, if the new arriving feature is judged
to be irrelevant, then it will be discarded directly for time-
saving. However, it is difficult to apply Definition 3 to judge
the irrelevant features. Thus, most of these algorithms calculate
the information between ft and D with different measures and
then compare the value with a predefined threshold. Only if
the information between ft and D is bigger than the threshold,
ft will be considered as a candidate feature. Otherwise, it will
be discarded as an irrelevant feature. In the second step, these
algorithms will evaluate whether ft is redundant. There are
three possible results.

1) ft is not redundant and it can increase the information
of the candidate feature subset. If so, ft will be added
to the candidate feature subset.

2) ft is not redundant, but it may make some features in the
candidate feature subset be redundant. Then, redundant
features will be removed.
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Fig. 1. Two-way interaction.

3) ft is redundant and cannot contribute to the class. Then,
it will be removed directly. Unlike existing streaming
feature selection methods, our new method will select
features from the perspective of feature interaction.

B. Analysis of N-Way Interaction in Feature Selection

In general, feature selection aims to select relevant
and nonredundant features from the condition feature set.
Nevertheless, for high-dimensional data sets, the definitions of
strong relevance, weak relevance, and irrelevance are hard to
be applied directly because we cannot test all the subsets of C .
Thus, many feature selection methods use an approximate
evaluating approach to judge the feature types.

Suppose that there are four features in a condition set C =
{ f1, f2, f3, f4} and the decision feature is D. We use MI to
measure the correlation between features.

1) Two-Way Interaction: For some MI-based feature selec-
tion methods [14], [38], if I ( f ; D) = 0 or I ( f ; D) < α
(where α is a user-defined parameter), then f will be discarded
as an irrelevant feature. These methods just consider the
two-way interaction in feature selection, as shown in Fig. 1.

For two-way interaction, it just considers the relationship
between pairs of features. For features f1, f2, f3, and f4,
only if I ( fi ; D) > α (α is a user-defined parameter), fi will
be considered as a candidate feature. Two-way interaction is
easy to be applied. For example, SAOLA [14] is a two-way
interaction method that employs the pairwise comparison
techniques. However, these methods ignore the interaction
among more than two features in C .

2) Three-Way Interaction: For three-way interaction, it con-
siders the relationship among three features. Fig.2 illustrates
the three-way interaction relationships in feature selection.

For three-way interaction in feature selection, there are two
cases.

1) I ( f1; D) > 0, I ( f2; D) > 0, and I ( f1; D| f2) >
I ( f1; D).

2) I ( f1; D) > 0, I ( f2; D) = 0, and I ( f1; D| f2) >
I ( f1; D).

In case 1), both two-way interaction feature selection meth-
ods and three-way interaction feature selection methods may
select both f1 and f2. However, in case 2), two-way interaction
methods will not consider f2 as a candidate feature for
I ( f2; D) = 0.

Definition 7 (Three-Way Interaction Value): Given f1,
f2 ∈ C and D, I NT = { f1, f2} is an interactive feature set.

Fig. 2. Three-way interaction.

We define the interaction value between f1 and f2 on D as

IntD( f1, f2) = I (D; { f2, f1}) − I (D; f1) − I (D; f2). (2)

Theorem 3: Given I NT = { f1, f2} and D, I NT is an
interactive feature set on D equivalent to IntD( f1, f2) > 0.

Proof 3: If I NT is an interactive feature set, according to
Definition 6, we have I (D; { f1, f2}) >

∑
f ∈I NT I (D; f ) =

I ( f1; D) + I ( f2; D). Thus, IntD( f1, f2) = I (D; { f2, f1}) −
I (D; f1)− I (D; f2) > 0. On the other hand, if IntD( f1, f2) =
I (D; { f2, f1}) − I (D; f1) − I (D; f2) > 0, we can conduct
that I NT = { f1, f2} is an interactive feature set on D. Thus,
I NT = { f1, f2} is an interactive feature set on D equivalent
to IntD( f1, f2) > 0.

Theorem 4: IntD( f1, f2) = I (D; f2| f1) − I (D; f2) =
I (D; f1| f2) − I (D; f1)

Proof 4: I (D; { f2, f1}) = I (D; f2) + I (D; f1| f2) =
I (D; f1)+ I (D; f2| f1), then IntD( f1, f2) = I (D; { f2, f1})−
I (D; f1) − I (D; f2) = I (D; f2) + I (D; f1| f2) − I (D; f1) −
I (D; f2) = I (D; f1| f2) − I (D; f1) = I (D; f1) +
I (D; f2| f1)− I (D; f1)− I (D; f2) = I (D; f2| f1)− I (D; f2).
Thus, IntD( f1, f2) = I (D; f2| f1)−I (D; f2) = I (D; f1| f2)−
I (D; f1).

If IntD( f1, f2) > 0, there is an interaction (positive inter-
action) between f1 and f2 on D. In other words, for interactive
features f1 and f2, IntD( f1, f2) = I (D; f1| f2)−I (D; f1) > 0
and I (D; f1| f2) > I (D; f1), which means that f2 can increase
the information between D and f1. We call positive interaction
as interaction for short.

If IntD( f1, f2) < 0, there is a redundancy (negative
interaction) between f1 and f2 on D. If IntD( f1, f2) =
I (D; f1| f2) − I (D; f1) < 0, in condition of f2, the informa-
tion between f1 and D is smaller than I (D; f1). Thus, there
must be some redundancy between f1 and f2 on D.

If IntD( f1, f2) = 0, I (D; { f, f1}) − I (D; f1) −
I (D; f2) = I (D; f1)+ I (D; f2| f1)− D(D; f1)− I (D; f2) =
I (D; f2| f1) − I (D; f2) = 0, I (D; f2| f1) = I (D; f2), and f1

and f2 are irrelevant (noninteraction) on D.
3) Four-Way Interaction: For four-way interaction, it con-

siders the relationship among four features, as shown in Fig.3.
For four-way interaction in feature selection, there are three

different cases.

1) I ( f1, D) > 0, I ( f2, D) = 0, I ( f3, D) = 0,
I ( f1; D| f2) > I ( f1; D), and I ( f1; f2| f3) > I ( f1; f2).
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Fig. 3. Four-way interaction.

2) I ( f1, D) > 0, I ( f2, D) = 0, I ( f3, D) = 0, and
I ( f1; D| f2, f3) > I ( f1; D).

3) I ( f1, D) > 0, I ( f2, D) > 0, I ( f3, D) = 0,
I ( f1; D| f3) > I ( f1; D), I ( f2; D| f3) > I ( f2; D).

In case 1), due to I ( f1; D| f2) > I ( f1; D), according
to Theorem 4, we can conduct that IntD( f1, f2) > 0. For
the same reason, due to I ( f1; f2| f3) > I ( f1; f2), then
Int f1( f2, f3) > 0. Thus, for four-way interaction 1), it equals
to two three-way interactions, namely I NT1 = { f1, f2, D} and
I NT2 = { f1, f2, f3}.

In case 2), for I ( f1; D| f2, f3) > I ( f1; D), we can know
that IntD( f1, f2) > 0 and IntD( f1, f3) > 0. Thus, for four-
way interaction 2), it equals to two three-way interactions,
namely I NT1 = { f1, f2, D} and I NT2 = { f1, f3, D}.

In case 3), for I ( f1; D| f3) > I ( f1; D), then we can conduct
that IntD( f1, f3) > 0. For I ( f2; D| f3) > I ( f2; D), we can
conduct that IntD( f2, f3) > 0. Thus, for Four-way interaction
3), it equals to two three-way interactions: I NT1 = { f1, f2, D}
and I NT2 = { f1, f3, D}.

Theorem 5: Given I NT = { f1, f2, f3} and D, if I NT is a
four-way interaction feature set, then it can be converted into
some three-way interactions, and the sum of these three-way
interaction values is bigger than 0.

Proof 5: As I NT is an interactive feature set, accord-
ing to Definition 6, we have I (D; { f1, f2, f3}) >

∑
f ∈I NT

I (D; f ) = I ( f1; D)+ I ( f2; D)+ I ( f3; D). For I (D; { f1, f2,
f3}) = I ( f3; D| f1, f2) + I ( f2; D| f1) + I ( f1; D), then
I ( f3; D| f1, f2) + I ( f2; D| f1) + I ( f1; D) > I ( f1; D) +
I ( f2; D) + I ( f3; D), and [I ( f2; D| f1) − I ( f2; D)] +
[I ( f3; D| f1, f2) − I ( f3; D)] > 0. There are three cases for
this inequality.

1) I ( f2; D| f1) > I ( f2; D) and I ( f3; D| f1, f2) >
I ( f3; D).

2) I ( f2; D| f1) > I ( f2; D), I ( f3; D| f1, f2) < I ( f3; D),
and [I ( f2; D| f1) − I ( f2; D)] + [I ( f3; D| f1, f2) −
I ( f3; D)] > 0.

3) I ( f2; D| f1) < I ( f2; D), I ( f3; D| f1, f2) > I ( f3; D),
and [I ( f2; D| f1) − I ( f2; D)] + [I ( f3; D| f1, f2) −
I ( f3; D)] > 0.

For case 1), the interaction values for { f1, f2, D},
{ f1, f3, D}, and { f2, f3, D} are all positive. For case 2), there
has positive interaction in { f1, f2, D} but has redundancy in
{ f1, f3, D} and { f2, f3, D}. Meanwhile, the sum of interac-
tion values is bigger than 0. For case 3), there is redun-
dancy in { f1, f2, D} but has positive interaction in { f1, f3, D}
and { f2, f3, D}. Meanwhile, the sum of interaction values is

bigger than 0. Thus, four-way interaction can be converted into
some three-way interactions, and the sum of these three-way
interaction values is bigger than 0.

In sum, for four-way interaction, we can convert it into the
sum of some three-way interactions. Meanwhile, for real-world
applications, it is easy to calculate the three-way interaction
between features.

4) N-Way Interaction: For n-way interaction (n > 4), it will
be very complicated with the increasing of n. Thus, it is
unrealistic to apply high-way interaction in feature selection.
However, we can approximate the high-way interaction by
considering all possible three-way interactions. In other words,
for more than three features, e.g., { f1, f2, f3, D}, we can use
P(D| f1, f2), P(D| f1, f3), and P(D| f2, f3) to find all the
possible three-way interaction relationships.

C. SFS-FI

In the streaming feature selection, we only get one feature at
each time stamp. For each new arriving feature ft , we should
consider the relationship between ft and feature f �( f � ∈ St−1)
to discover the possible interactions. Thus, we define interac-
tion gain in the following.

Definition 8 (Interaction Gain): Given C and D, S is a
nonempty set, S ⊆ C , f ∈ C , and f /∈ S. We define the
interaction gain between f and S on D as

I G( f, S) =
∑
fi ∈S

{P(D| f, fi ) − P(D| fi ) − P(D| f )}. (3)

Theorem 6: Given C and D, S ⊆ C , f ∈ C , and f /∈ S.
If I G( f, S) > 0, f is relevant to D.

Proof 6: For I G( f, S) = ∑
fi ∈S{P(D| f, fi ) − P(D| fi ) −

P(D| f )} > 0, there is at least one feature f � that makes
P(D| f, f �) − P(D| f �) − P(D| f ) > 0. Suppose that I NT =
{ f, f �}, and P(D| f, f �) > P(D| f �) + P(D| f ); then, I NT is
an interactive feature set on D. According to Theorem 2, f
is relevant to D.

Definition 9 (Positive Interaction): For a new arriving fea-
ture ft at time stamp t and the selected feature subset St−1,
if I G( ft , St−1) > 0, ft will be considered as a positive
interactive feature for St−1.

Definition 10 (Negative Interaction): For a new arriving
feature ft at time stamp t and the selected feature subset
St−1, if I G( ft , St−1) < 0, ft will be considered as a negative
interactive feature for St−1.

For high-dimensional real-world data sets, the value of
interaction gain could be very small for may new arriving
features. Thus, we need a threshold γ for I G to reduce
the number of selected features and improve efficiency. For
a new arriving feature ft at time stamp t and the selected
feature subset St−1, if I G( ft , St−1) ≥ γ , ft will be considered
as a strong interactive feature for St−1. Otherwise, if 0 <
I G( ft , St−1) < γ , ft will be considered as a weak interactive
feature for St−1.

Theorem 7: If I G( ft , St−1) < 0, there exist a redundancy
between ft and some features in St−1.

Proof 7: For I G( ft , St−1) = ∑
f �∈St−1

{I (D; { f �, ft }) −
I (D; f �) − I (D; ft )} = ∑

f �∈St−1
{I (D; f �) + I (D; ft | f �) −

I (D; f �)− I (D; ft )} = ∑
f �∈St−1

{I (D; ft | f �)− I (D; ft )} < 0.
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Then, there must exist one feature fi ∈ St−1 at least,
which makes I (D; ft | fi ) − I (D; ft ) < 0. IntD( ft , fi ) =
I (D; ft | fi ) − I (D; ft ) < 0. Thus, there exist a redundancy
between ft and some features in St−1.

During streaming feature selection, suppose that ft is the
new arriving feature at timestamp t , and the candidate feature
set is St−1; it can be divided into three cases.

1) If I G( ft , St−1) ≥ γ , ft will be consider as a strong
interactive feature for St−1 and can be selected into S
directly.

2) If I G( ft , St−1) ≤ 0, according to Theorem 7, ft will be
discarded directly as a redundant feature.

3) If 0 < I G( ft , St−1) < γ , ft is a weak interactive feature
for St−1. In order to avoid selecting too many features,
we will check whether there exist some features in St−1

having redundancy with ft . This can be further divided
into two situations.

a) If ∃Y ∈ St−1, I ( ft ; D|Y ) = 0 holds, and ft will be
considered as a redundant feature and be discarded
directly.

b) Otherwise, if ∃Y ∈ St−1, I (Y ; D| ft ) = 0 holds,
Y will be discarded as a redundant feature.

For case 3), I ( ft ; D|Y ) and I (Y ; D| ft ) exactly equal to 0,
which is rare for real-world data sets [14]. Thus, we rewrite
these two situations into: 1) if ∃Y ∈ St−1, I (Y ; D) > I ( ft ; D)
and I ( ft ; Y ) ≥ I ( ft ; D) holds, and fi is discarded and 2) if
∃Y ∈ St−1, I ( ft ; D) > I (Y ; D) and I ( ft ; Y ) ≥ I (Y ; D)
holds, and Y can be removed from St−1.

To sum up, we propose the new streaming feature selection
algorithm, which considers the feature interaction between
features, named SFS-FI, as shown in Algorithm 1.

At step 3, we calculate the interaction gain between ft and
St−1. If I G( ft , St−1) is bigger than the predefined threshold
γ , ft will be considered as a strong positive interactive feature
and be added into St−1. At step 7, if I G( ft , St−1) ≤ 0, ft will
be discarded as a negative interactive feature. From step 11 to
step 22, ft is considered as a weak positive interactive feature,
and the algorithm will check if there exist some features in
St−1 having a redundancy with ft .

For data with discrete values, we use the measure of MI.
The MI is a measure of the amount of information that one
random variable has about another variable [27]. Formally, for
two features X and Y , the MI is defined as follows:

I (X; Y ) =
n∑

i=1

m∑
j=1

p(xi , y j)log2

(
p(xi, y j )

p(xi) · p(y j)

)
. (4)

For data with continuous values, we adopt the best known
measure of Fisher’s Z-test [39] to calculate correlations
between features. In a Gaussian distribution, Normal(μ,�),
the population partial correlation P( fi , Y |S) between feature
fi and the feature Y given a feature subset S is calculated as
follows:

P( fi , Y |S) =
−

((∑
fi Y S

)−1
)

fi Y((∑
fi Y S

)−1
)

fi fi

((∑
fi Y S

)−1
)

Y Y

. (5)

Algorithm 1 SFS-FI
Require:

C: the condition features;
D: the decision feature;
γ : the threshold for interaction gain;

Ensure:
St : the selected feature subset at time stamp t;

1: Repeat
2: get a new feature ft at time stamp t ;
3: If I G( ft , St−1) ≥ γ
4: St = St−1 ∪ ft ;
5: Go to Step 23;
6: End If
7: If I G( ft , St−1) ≤ 0
8: Discard ft ;
9: Go to Step 23;

10: End If
11: If 0 < I G( ft , St−1) < γ
12: For each feature fi in S
13: If I ( fi ; D) > I ( ft ; D)&I ( ft ; fi) ≥ I ( ft ; D)
14: Discard ft ;
15: Go to Step 23;
16: End If
17: If I ( ft ; D) > I ( fi ; D)&I ( ft ; fi) ≥ I ( fi ; D)
18: St−1 = St−1 − fi ;
19: End If
20: End For
21: St = St−1 ∪ ft ;
22: End If
23: Until no features are available;
24: return St ;

In Fisher’s Z-test, under the null hypothesis of conditional
independence between fi and Y given S, P( fi , Y |S) = 0.
With the given significance level α and the p-value returned by
Fisher’s Z-test p, under the null hypothesis of the conditional
independence, if p > α, fi and Y are uncorrelated; otherwise,
if p ≤ α, fi and Y are correlated with each other.

Besides, SFS-FI is not just SAOLA [14] using a threshold γ .
This is because SFS-FI is different from SAOLA in two
aspects: 1) SAOLA just considers the relationship in feature
pairs and it is one of the Two-way interaction methods, while
SFS-FI is a three-way interaction method and considers the
relationship more than two features and 2) SFS-FI divides the
feature interaction into two categories, namely positive inter-
action and negative interaction. Only the features belonging to
the negative interaction will be discarded directly. This reduces
the possibility of the loss of important features. Experiment
results in Section V demonstrate the efficiency of SFS-FI
compared with SAOLA.

D. Time Complexity of SFS-FI

At time stamp t , suppose that the number of selected feature
subset in St−1 is |St−1|. From step 3 to step 10, we calculate
I G( ft , St−1) and compare it with γ and 0. The time com-
plexity of these steps is O(|St−1|). If 0 < I G( ft , St−1) < γ ,
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TABLE II

REAL-WORLD DATA SETS

we compare the information between ft and each feature
in St−1. The worst time complexity of steps 12–20 is
O(|St−1|). Thus, the worst time complexity of SFS-FI is
O(m2). However, for real-world data sets, it is impossible that
all features are weak positive interactive and SFS-FI can select
all the features.

V. EXPERIMENTAL RESULTS

A. Experiment Setup

In this section, we apply the proposed streaming feature
selection algorithm on 14 real-world data sets, including
eight DNA microarray data sets [LEUKEMIA, COLON,
LYMPHOMA, PROSTATE, SRBCT, DLBCL, BREAST, and
LEUKEMIA(3C)], two NIPS 2003 data sets (MADELON and
ARCENE), and four WCCI 2006 data sets (ADA, GINA,
SYLVA, and HIVE), as shown in Table II. We analyze the
value of parameter γ at first. Then, we compare SFS-FI with
some state-of-the-art streaming feature selection approaches.

In our experiments, we use two basic classifiers, KNN
(k = 3) and SVM, in MATLAB to evaluate a selected feature
subset. We perform fivefold cross-validation on each data set.
Feature selection is training on 4/5 data samples and testing
on the rest 1/5 data. All competing algorithms use the same
training and testing data for each fold. We run each data set ten
times and report the average prediction accuracy, running time,
and the mean number of selected features. All experimental
results are conducted on a PC with AMD 3700X, 3.6-GHz
CPU, and 32-GB memory.

To further analyze the prediction accuracies of SFS-FI
against its rivals, paired t-tests are conducted at a 95% sig-
nificance level, and the win/tie/lose (W/T/L for short) counts
are summarized. Meanwhile, we conduct the Friedman test at
a 95% significance level under the null-hypothesis to validate
whether SFS-FI, and its rivals have a significant difference in
prediction accuracy. If the null-hypothesis at the Friedman test
is rejected, we proceed with the Nemenyi test as a post-hoc
test [40].

B. Analysis on Parameter γ

To test the effect of different values of γ , we apply SFS-FI
with the values of γ = 0.01, 0.03, 0.05, and 0.09 on these

Fig. 4. KNN predictive accuracy varying with different values of γ .

Fig. 5. SVM predictive accuracy varying with different values of γ .

14 data sets respectively. The significance level is set to
0.01 for Fisher’s Z-test. Experimental results of predictive
accuracy, running time, and the mean number of selected
features can be seen from Figs. 4–7.

The p-values of the Friedman test on KNN and SVM are
0.1179 and 0.5095, respectively. Thus, there is no significant
difference in predictive accuracy in both cases of KNN and
SVM. Meanwhile, the p-values on running time and the mean
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Fig. 6. Running time varying with different values of γ .

Fig. 7. Mean number of selected features varying with different values of γ .

number of selected features are 1.8087e−07 and 7.9883e−07.
Thus, there is a significant difference between different values
of γ on running time and the mean number of selected
features.

From Figs. 4–7, we can observe the following.
1) On predictive accuracy, for some data sets, such as

SYLVA, MADELON, and HIVE, different values of
γ have the same predictive accuracy and select the
same number of features, which means that there is
very weak or even no feature interaction in these data
sets. For data sets SRBCT and ARCENE, a smaller
value of γ gets higher performance. Meanwhile, for data
sets PROSTATE and LEUKEMIA, a bigger value of γ
performs better. Different values of γ will affect the
number of selected features that make the performance
difference. In general, for strong interaction data sets,
it prefers a bigger value of γ . For weak interaction data
sets, a smaller value of γ performs better.

2) On running time, the difference between these five
values of γ is large. If the data set has very weak or even
no interaction, SFS-FI runs fast and spends almost the

same time for all different values of γ . For others,
a smaller value of γ makes SFS-FI considering more
features on the fly, which leads to more running time.

3) On the mean number of selected features, the value of
γ is inversely proportional to the number of selected
features. Meanwhile, the value of γ is not necessarily
as small as possible for it can increase the probability
of selecting redundant features.

To sum up, for some data sets that have very weak or even
no feature interaction, different values of γ cannot affect
the performance of the final selected features. For others,
a smaller value of γ can make SFS-FI considering more
possible interactive features during streaming feature selection.
In the following experiments, we set γ = 0.01 for our new
method. Meanwhile, we will not conduct the experiments on
data sets SYLVA, MADELON, GINA, and HIVE because
there is very weak or even no feature interaction.

C. SFS-FI Versus Online Streaming Feature Selection
Methods

We compare SFS-FI with other seven streaming feature
selection methods, including: Grafting [34], Alpha-
investing [35], OSFS and Fast-OSFS [12], SAOLA [14],
OFS-Density [20], and OFS-A3M [18]. All aforementioned
algorithms are implemented in MATLAB [41] and are applied
on ten data sets (ADA, COLON, SRBCT, LYMPHOMA,
PROSTATE, LEUKEMIA, DLBCL, LEUKEMIA(3C),
ARCENE, and BREAST). The significance level α is set
to 0.01 for OSFS, Fast-OSFS, SAOLA, and SFS-FI. For
Grafting, the parameter λ is set to 0.5. For Alpha-investing,
the parameters are set to the values used in [35].

Tables III and IV summarize the predictive accuracy of
SFS-FI against the other seven algorithms using the KNN
and SVM classifiers. Tables V and VI show the running time
and the mean number of selected features respectively. The
p-values of the Friedman test on KNN, SVM, running time,
and the mean number of selected features are 1.5113e−04,
7.3207e−06, 5.4861e−15, and 9.5349e−08, respectively. Thus,
there is a significant difference among these competing algo-
rithms, respectively, on predictive accuracy, running time, and
the number of selected features. According to the Nemenyi
test, the value of the critical difference (CD) is 3.3230.

From Tables III–VI, we have the following observations.

1) SFS-FI Versus Grafting: According to the average ranks
and the value of CD, there is a significant difference
between SFS-FI and Grafting in both cases of KNN and
SVM. SFS-FI significantly performs better than Grafting
on predictive accuracy. Meanwhile, SFS-FI runs much
faster than Grafting. Grafting treats feature selection
as an integral part of learning a predictor within a
regularized framework. When a new feature arrives,
Grafting needs to update the whole model, and this will
result in high time complexity. Besides, for different data
sets, the number of selected features by Grafting varies
widely. For example, Grafting selects only one feature
on DLBCL but 108 on ARCENE. This makes Grafting
cannot well adapted to different types of data sets.
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TABLE III

PREDICTIVE ACCURACY USING KNN AS THE CLASSIFIER

TABLE IV

PREDICTIVE ACCURACY USING SVM AS THE CLASSIFIER

TABLE V

RUNNING TIME (SECONDS)

2) SFS-FI Versus Alpha-Investing: There is a significant
difference between SFS-FI and Alpha-investing on pre-
dictive accuracy in both cases of KNN and SVM. SFS-
FI significantly performs better than Alpha-investing on
predictive accuracy. Alpha-investing runs very fast, but it
gets the lowest mean predictive accuracy among all these
competing algorithms. For most of these data sets, such
as COLON, LEUKEMIA, and SRBCT, Alpha-investing
can only select the first one or two features that lead to
bad performance.

3) SFS-FI Versus OSFS: There is no significant difference
between SFS-FI and OSFS on predictive accuracy
with KNN and SVM. However, SFS-FI outperforms
OSFS on six and seven of the ten data sets with
KNN and SVM, respectively. OSFS runs a little faster
than SFS-FI on average. Meanwhile, OSFS selects
the fewest mean number of features among all these
competing methods. Thus, some important informa-
tion may be missing, which causes lower predictive
accuracy.
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TABLE VI

MEAN NUMBER OF SELECTED FEATURES

4) SFS-FI Versus Fast-OSFS: There is no significant differ-
ence between SFS-FI and Fast-OSFS on predictive accu-
racy in the cases of KNN and SVM. However, SFS-FI
gets higher predictive accuracy than FAST-OSFS on six
of the ten data sets at least with both cases of KNN and
SVM. Fast-OSFS is much faster than SFS-FI. As similar
to OSFS, Fast-OSFS considers features individually and
selects much fewer features on these data sets that lead
to the loss of some important information.

5) SFS-FI Versus SAOLA: There is no significant difference
between SFS-FI and SAOLA on predictive accuracy.
However, SFS-FI outperforms SAOLA on six and seven
of the ten data sets with KNN and SVM, respectively.
SAOLA employs novel online pairwise comparison
techniques and maintains a parsimonious model over
time in an online manner. Therefore, SAOLA is faster
than SFS-FI. However, SAOLA does not consider the
interaction between features, which is important for the
final performance.

6) SFS-FI Versus OFS-Density: There is no significant
difference between SFS-FI and OFS-Density on predic-
tive accuracy. However, SFS-FI gets higher predictive
accuracy than OFS-Density on six of the ten data sets at
least with KNN and SVM respectively. SFS-FI is faster
than OFS-Density and selects more features. Based on
neighborhood rough set theory, OFS-Density uses the
density information for feature selection and considers
the selected feature subset as an integral. However,
for some data sets, such as COLON and LEUKEMIA,
OFS-Density selects much fewer features for the very
sparse of data distribution.

7) SFS-FI Versus OFS-A3M: According to the average
ranks and the value of CD, there is no significant
difference between SFS-FI and OFS-A3M on predictive
accuracy in both cases of KNN and SVM. However,
SFS-FI gets higher predictive accuracy than OFS-A3M
on seven of ten data sets at least with both KNN and
SVM. Like OFS-Density, OFS-A3M bases on the GAP
neighborhood relationship and the dependence degree
of selected feature subset for feature selection. However,
the cap information can be greatly affected by the sample
distribution.

In sum, SFS-FI gets the maximum average predictive accu-
racy and the minimum value of average ranks with both
cases of KNN and SVM. Meanwhile, SFS-FI is faster than
some of the competing algorithms. With the considering of
feature interaction, SFS-FI selects the most features. However,
the selection of interactive features demonstrates to have a
contribution to the final performance.

VI. CONCLUSION

In this article, we study the problem of feature interaction
and propose a new streaming feature selection method that
can select features to interact with each other. With the
formal definition of feature interaction, we analyze and demon-
strate the relationship between feature relevance and feature
interaction. Besides, we systematically analyze the two-way
interaction, three-way interaction, and four-way interaction
in feature selection and design the new metric interaction
gain that can measure the interaction degree between the new
arriving feature and the selected feature subset. In terms of
interaction gain, we demonstrate that the features selected by
our new method are relevant to the class and interact with
each other. Experiments conducted on real-world microarray
data sets indicate the efficiency of our new method. In our
further work, more high-way interactions, including five-way
interaction, will be analyzed and considered for streaming
feature selection.
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