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a b s t r a c t

Feature selection is a vital dimensionality reduction technology for machine learning and data mining
that aims to select a minimal subset from the original feature space. Traditional feature selection
methods assume that all features can be required before learning, while features may exist in a
stream mode for some real-world applications. Therefore, online streaming feature selection was
proposed to handle streaming features on the fly. When the feature dimension is extraordinarily high
or even infinite, it is time-consuming or impractical to wait for all the streaming features to arrive.
Motivated by this, we study and solve the exciting issue of whether we can terminate the online
streaming feature selection early for efficiency while maintaining satisfactory performance for the first
time. Specifically, we first formally define the problem of online early terminated streaming feature
selection and summary two properties that the early terminated mapping function should satisfy. Then
we choose the dependency degree function in Rough Set theory as our early terminated mapping
function and demonstrate that it satisfies the two properties. Based on this, we propose a novel Early
Terminated Online Streaming Feature Selection framework, named OSFS-ET, which could terminate
the streaming feature selection early before the end of streaming features and guarantee a competing
performance with the currently selected features. Extensive experiments on twelve real-world datasets
demonstrate that OSFS-ET can be far faster than state-of-the-art streaming feature selection methods
while maintaining excellent performance on predictive accuracy.

© 2021 Elsevier B.V. All rights reserved.
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. Introduction

Feature selection aims to select a minimal subset from the
riginal feature space that can retain the optimum salient char-
cteristics and is treated as a data preprocessing component
or high-dimensional datasets before machine learning and data
ining [1]. From the perspective of whether using classifiers
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or not during feature selection, we can divide feature selection
methods into three categories: filter, wrapper, and embedded [2].
Filter methods select the features in terms of specific feature
measurements, while wrapper methods use predefined classifiers
as a black box to evaluate the selected features [3]. Embedded
methods perform feature selection in the process of model con-
struction [4]. From a data perspective, we can divide feature
selection into traditional feature selection methods for static data,
and online feature selection methods for stream data [5].

Traditional feature selection has been studied for decades, and
there are many papers in this research area [5–8]. In general, tra-
ditional feature selection methods select features from the feature
space according to specific strategies and assume that all features
can be required before learning. However, the feature space may
be unknown in advance, and features can exist in a stream mode
for some real-world applications, such as impact crater detec-
tion [9] and multiple descriptors image analysis [10]. Besides, as
the increasing of data volume and dimensionality [11], it cannot
load all the data into memory at once before feature selection

for some big datasets. Therefore, for big datasets, they are more
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ppropriate to be processed by rows (samples) or by columns
features) in feature selection [12,13]. Stream data can be further
ivided into the instance stream and feature stream [5]. In this
aper, we focus on feature selection with feature streams. Feature
treams are defined as the features flow in one by one over
ime, whereas the number of instances remains fixed [14]. Online
treaming feature selection deals with feature streams on the
ly and can handle extraordinarily high-dimensional or infinite
eature space datasets [15]. The flow charts of traditional feature
election and online streaming feature selection are shown as
ig. 1(a) and (b), respectively. There are two main differences
etween traditional feature selection and online streaming fea-
ure selection. First, the former can require all features in the
ataset before learning, while the latter just gets one streaming
eature once without the information of the entire feature space.
econd, the former can compare each feature in the feature space
ultiple times while the latter must decide to retain or discard

he new arriving feature immediately. Once a feature is discarded,
t cannot be selected or used again. Thus, it is more challenging
or the latter to retain optimal features on the fly.

Specifically, Perkins et al. [16] first proposed the problem of
nline feature selection with stream features. Based on stream-
ise regression, Zhou et al. [17] proposed two penalized like-

ihood ratio methods for the online streaming feature selection
roblem. Wu et al. [14] proposed the OSFS (Online Streaming
eature Selection) framework that consists of two main compo-
ents: online relevance analysis and online redundancy analysis.
onsidering the feature interaction between features during on-
ine streaming feature selection, Zhou et al. [18] proposed a new
ethod that could select features to interact with each other. Be-
ides, many researchers have recently begun applying the Rough
et theory for online streaming feature selection, such as the
lassical Rough Set based method OS-NRRSARA-SA [19], and the
eighborhood Rough Set based methods OFS-A3M [20] and OFS-
ensity [21]. In terms of different technologies and theories, all
hese methods mentioned above have been proved efficiently in
he experiments. However, if the feature space is extraordinarily
mmense or even infinite, is it necessary to wait for all the stream-
ng features to arrive? For example, in bioinformatics [22], for the
igh cost of conducting wet-lab experiments, acquiring the com-
lete set of features for every training instance is prohibitive, and
t is impossible to wait for a complete set of features. If we can
erminate the selection early with currently generated streaming
eatures, it could save the time cost. Thus, it is an exciting issue to
tudy whether we can terminate the streaming feature selection
arly for efficiency while maintaining satisfactory performance.
here are three main reasons for early terminated online stream-
ng feature selection. (1) The streaming features are infinite, and
t is impractical to wait for all features to arrive. (2) The currently
elected features are ‘‘good enough’’, so it is unnecessary to wait
or more features. (3) The time cost of waiting is too high to
ave to end the selection as soon as possible. In other words,
f the currently selected features are ‘‘good enough’’ and the
xpectation of the increase using the future arriving features is
uch lower than the cost of the time consumption, it is worthy
f terminating the selection immediately.
The flow chart of early terminated online streaming feature

election is shown as Fig. 1(c). The main difference between
nline streaming feature selection and early terminated online
treaming feature selection lies in whether the method contains
stopping criterion that can terminate the selection early before
he end of streaming features. However, there are three main
hallenges for online early terminated streaming feature selec-
ion. First, we cannot provide a fixed stopping criterion in advance
ithout the complete information of feature space before learn-
ng. In other words, we cannot terminate the streaming feature c

2

selection with some specific thresholds. Second, during online
streaming feature selection, which features will arrive in the
upcoming period can be independent of the history. The values
of the target mapping function on the currently selected fea-
tures may fluctuate. Thus, it is not easy to choose an adequately
terminated timestamp. Third, once we terminate the streaming
selection, all the following arriving features will be discarded di-
rectly. Therefore, it is a challenge to ensure the currently selected
features are good enough. Besides, for some real-world applica-
tions, such as bioinformatics, feature generation is expensive or
time-consuming for the target instances. Thus, if the streaming
features are extraordinarily immense or even infinite, it is not
cost-effective or impractical to wait for all streaming features to
arrive. Thus, it is essential to address these challenges for online
early terminated streaming feature selection.

Without the information of the entire feature space, streaming
feature selection methods usually apply filter mode, which selects
the features in terms of a specific feature mapping function [15].
The main target of online streaming feature selection methods
is to maximize the value of the mapping function with the ar-
rived features at each time. Therefore, if the expectation of the
increase in mapping function is much lower than the cost of time
consumption, then we can terminate the selection immediately
for efficiency. In other words, at timestamp t , if the value of
the mapping function on the currently selected features is ‘‘big
enough’’ and the expectation of the increase for the future arriv-
ing features is much lower than the cost of time consumption,
we should terminate the selection immediately. Besides, as we
know, feature selection is an NP-hard problem. Therefore, most
of filter mode based feature selection methods adopt greedy
strategies and choose the best feature in each round [6]. With a
specific mapping function h, we aim to maximize h(St ) where St
s the selected feature subset at timestamp t . Thus, to terminate
he selection safely, we point out two properties that an early
erminated mapping function must satisfy: (1) having an upper
ound and (2) being non-decreasing. Property (1) is used to judge
hether the currently selected feature is ‘‘good enough’’, while
roperty (2) makes it possible to predict the future growth of the
arly terminated mapping function.
Recently, a batch of Rough Set-based online streaming feature

election methods [19–21,23] have been proposed for the two
ost important advantages: (1) Rough Set based data mining
ethods do not require any domain knowledge other than the
iven dataset; (2) By using the dependency degree of the can-
idate feature subset, these methods can measure the selected
eature subset as an integral. The main target of Rough Set-
ased online streaming feature selection methods is to maximize
he dependency degree of the selected feature subset at each
imestamp. In this paper, we choose the dependency degree as
ur early terminated mapping function and demonstrate that
t satisfies the two properties in Theorem 3. Theoretically, the
aximal value of the dependency degree can reach one. However,

he increase in the dependency degree of selected feature subset
s not linear and smooth, and it may no longer grow after a
articular timestamp. For example, we apply the baseline Rough
et based online streaming feature selection method RS-OSFS
as shown in Algorithm 1) on dataset Nova (from WCCI 2006,
he number of features is 16,969). Suppose we only get one
eature at each timestamp. Fig. 2 reports the growth trend of the
ependency degree with the selected feature subset varying with
ifferent timestamps (the number of arrived streaming features).
The dependency degree of the selected feature subset only

ncreases 0.0092 from 8000 to 10,000. Besides, the increase in the
ependency degree is less than 0.013 for the next 6969 features
from 10,001 to 16,969). Thus, the motivation for terminating the
treaming feature selection early before the end is that the in-

rease of dependency degree is much lower than the cost of time
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Fig. 1. Flow charts of traditional feature selection (a), online streaming feature selection (b) and early terminated online streaming feature selection (c).
Fig. 2. The growth trend of dependency degree on Nova varying with different
imestamps. With the arriving of half of all features (around timestamp 8000),
he dependency degree of the selected feature subset nearly reaches the maximal
alue 1.

onsumption. In other words, if we can terminate the streaming
eature selection early while guaranteeing the competing per-
ormance of the currently selected feature subset, it is worthy
f doing it. Nevertheless, this interesting problem has not been
tudied as far as we know.
In this paper, we study how to terminate the streaming fea-

ure selection early and propose a new Early Terminated On-
ine Streaming Feature Selection framework, named OSFS-ET. The
ain innovations and contributions of this paper are as follows:

• We first propose this novel issue of early terminated online
streaming feature selection. With the in-depth analysis of
why we should terminate the streaming feature selection
early, we present a formal definition of this issue for the first
time. As far as we know, none of the existing online stream-
ing feature selection methods can automatically terminate
the selection early before the end of streaming features.

• To terminate online streaming feature selection early and
safely, we summarize two properties for the early termi-
nated mapping function which should satisfy. Meanwhile,
we prove the finite limit for the satisfied mapping function
even though the feature streams are infinite.
3

• We choose the dependency degree function in Rough Set
theory as our early terminated mapping function and
demonstrate that it satisfies the two properties. Based on
this, we propose a new framework OSFS-ET that can ter-
minate the online streaming feature selection early while
maintaining a competing performance using the currently
selected features.

• We conduct extensive experimental comparisons between
OSFS-ET and seven state-of-the-art competing online
streaming feature selection algorithms on twelve real-world
datasets. Experiment results demonstrate that our new early
terminated method can be far faster than the competing
streaming feature selection algorithms while maintaining an
outstanding performance on predictive accuracy.

The rest of this paper is organized as follows. Section 2 briefly
introduces some traditional feature selection methods and fo-
cuses on the related works of online streaming feature selection.
In terms of different theories and technologies, we divide all
these online streaming feature selection methods into Rough Set-
based and non-Rough Set-based. In Section 3, we first present
the formal definition of online early terminated online streaming
feature selection. Then, we analyze the main properties of the
early terminated mapping function that should satisfy and choose
the dependency degree function in Rough Set Theory in this pa-
per. Based on these, we propose the new early terminated online
streaming feature selection framework OSFS-ET. Experimental
analyses are presented in Section 4, including the experiment
settings, the parameter analysis of OSFS-ET, and the experimental
comparison between OSFS-ET and seven state-of-the-art compet-
ing algorithms. In Section 5, we make a brief conclusion of this
paper, point out the limitations of the proposed framework, and
give some suggestions in our future work.

2. Related work

Feature selection aims to select a minimal subset from the
original feature space and is essential to speed up learning and
improve concept quality [1]. According to different data types,
we can divide feature selection into two categories: traditional
feature selection for static data and online feature selection for
stream data [5].

2.1. Traditional feature selection for static data

For static data, traditional feature selection has been stud-
ied for decades, and there are many papers in this research
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rea [7]. Considering whether using a classifier or not in fea-
ure selection, we can further divide feature selection into three
ategories: filter, wrapper and embedded [2]. For example, Wei
t al. [3] designed a new measure named Dynamic Feature Impor-
ance (DFI) and its corresponding feature selection algorithm for
igh-dimensional and small-sample-size data. In order to obtain
igher classification accuracy with a smaller number of features,
n effective hybrid feature selection framework was proposed.
anikandan et al. [24] propose an efficient feature selection

ramework based on mutual information and Monte Carlo tree,
hich aims to select optimal features from the high dimensional
atasets. Besides, based on the Rough Set theory, many feature
election (attribute reduction) methods were proposed in the
iterature [25]. Recently, Yuan et al. [8] gave a comprehensive
eview of attribute reduction methods based on fuzzy Rough Set
heory.

.2. Online feature selection for stream data

However, for some real-world applications, data may exist in a
treammode. There are two types of stream data: instance stream
nd feature stream [5]. The instance stream assumes that the
umber of features on training data is fixed while the number
f instances changes over time [26,27]. This paper focuses on
he online feature selection problem with feature streams, which
ssumes the features exist in a stream mode and flows in one
y one over time, whereas the number of instances remains
ixed [15]. Based on feature selection whether using Rough Set
heory, we further divide online streaming feature selection into
ough Set-based methods and non-Rough Set-based methods.

.2.1. Non-rough set-based online streaming feature selection
Grafting [16] was the first method which deals with the prob-

em of online feature selection. Based on the stagewise gradient
escent, Grafting was an embedded method that treats feature se-
ection as an integral part of learning a predictor within a regular-
zed framework. Information-investing and alpha-investing [17]
ere two penalized likelihood ratio methods that focus on the
nline streaming feature selection problem. Based on streamwise
egression, these two methods did not need to determine any
rior parameters in advance and run very fast. OSFS (Online
treaming Feature Selection) and fast-OSFS [14] were two online
treaming feature selection methods based on conditional inde-
endence/dependence tests. In terms of online relevance analysis
discarding irrelevant features) and online redundancy analysis
eliminating redundant features), these two methods selected a
ery compact feature subset. SAOLA [28] (a Scalable and Accurate
nline feature selection Approach) was a novel online pairwise
omparison technique based method that aimed to addresses
wo challenges in many big data applications: extremely high
imensionality and its highly scalable requirement of feature
election. GFSSF [29] was Mutual Information based method that
ould work on both the group and individual feature levels, by ex-
loiting entropy and mutual information in information theories.
SFSMI and OSFSMI-k [30] were two Mutual Information based
treaming feature selection algorithms that attempt to handle
he challenges of high computational cost, the stability of the
enerated results, and the size of the final features subset. SFS-
I [18] considered the interaction between features during online
treaming feature selection and proposed a new method that can
elect features to interact with each other. All these methods
entioned above aim to handle the online streaming feature
election problem on the fly and have been demonstrated to be
fficient in the experiments. Inspired by these methods, our new
nline streaming feature selection framework also consists of
wo main components: relevant feature selection and redundancy
eature removal.
4

Recently, some new works have studied the online stream-
ing feature selection from other perspectives. For example, GF-
CSF [31] conducted online feature selection from capricious
streaming features, where features flow in one by one with
some random missing entries while the number of data in-
stances remains fixed. GF-CSF adopted latent factor analysis to
preprocess capricious streaming features for completing their
missing entries before conducting feature selection. I-SFS and
G-SFS [32] were two streaming feature selection methods for
multi-label data where the multiple labels are reduced to a lower-
dimensional space. These two methods grouped the similar labels
before performing the selection method to improve the selection
quality and make the model efficient. LOSSA [33] was a latent-
factor-analysis-based online sparse-streaming-feature selection
algorithm, which aims to implement online feature selection
from sparse streaming features. The main idea of LOSSA is to
apply latent factor analysis to pre-estimate missing data in sparse
streaming features before conducting feature selection, thereby
addressing the missing data issue effectively and efficiently. OCF-
SSFs [34] was an online causal feature selection method for
streaming features through mining Markov blanket containing
parents and children (PC) and spouse. Furthermore, OCFSSFs dis-
tinguished PC and spouse in real-time and could identify children
with parents online when identifying spouses.

2.2.2. Rough set-based online streaming feature selection
Without requiring any additional information, the Rough Set

theory can reduce dimensionality using intrinsic information
within the data. There are many feature selection methods based
on the classical Rough Set model and its extended models (such
as the Neighborhood Rough Set model, Probabilistic Rough Set
model, and Fuzzy Rough Set model) [8,35]. Besides, many re-
searchers have recently begun applying the Rough Set theory
for online streaming feature selection. Specifically, [36] was one
of the early works based on fuzzy-rough set theory, in an at-
tempt to deal with feature selection scenarios where features
and instances may be dynamically added or removed through-
out the training process. OS-NRRSARA-SA [19] was proposed
as a classical Rough Set based method for online streaming
feature selection which considers both the boundary and posi-
tive regions. Meanwhile, OS-NRRSARA-SA uses a noise-resistant
dependency measure to search for reduces. CIE-OSFS [37] was
an OSFS based uncertainty measure framework to address the
online streaming feature selection problem from the Rough Set
perspective. By specifying the uncertainty measure with condi-
tional information entropy (CIE), CIE-OSFS did not need prior
knowledge to deliver credible results and was robust to changing
streaming orders. K-OFSD [23] was a k-nearest neighborhood
relation based online streaming feature selection method from
the Neighborhood Rough Set perspective for high-dimensional
and class-imbalanced data. With the information of K near-
st neighbors, K-OFSD selected relevant features that can get a
igher separability between the majority class and the minority
lass. OFS-A3M [20] was a new non-parametric online streaming
eature selection method that need not specify any optimal pa-
ameter values before learning. OFS-A3M can select features with
igh correlation, high dependency, and low redundancy in terms
f the maximal-dependency, maximal-relevance, and maximal-
ignificance evaluation criteria. OFS-Density [21] was proposed
or online streaming feature selection where the sample distri-
ution of instances is usually not uniform. Meanwhile, Rough
et-based methods usually use the increase of dependency degree
o select features while the exactly equal constraint is too strict
or real-world applications during streaming feature selection.
ith the density information of the surrounding instances and

he fuzzy equal constraint, OFS-Density can select features with
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ow redundancy. These Rough Set-based methods have demon-
trated the effectiveness of applying Rough Set theory for the
nline streaming feature selection problem. Therefore, this paper
pplied the dependency degree function in the Rough Set theory
o construct our new early terminated framework.

Table 1 summarizes the analysis of some existing streaming
eature selection methods, including four main properties: fea-
ure selection type, core technology/theory, the main advantages,
nd disadvantages.
For real-world streaming feature selection applications, the

eatures are generated one by one over time with specific time
ntervals. Therefore, when the feature space is extraordinarily im-
ense or even infinite, it will take a very long time or impractical

o wait for all the features to arrive. However, as far as we know,
one of the existing online streaming feature selection methods
an automatically terminate the selection early before the end of
treaming features. Thus, this prompted us to study whether we
ould terminate the streaming feature selection early before the
nd.

. The proposed framework

This section first defines online streaming feature selection
nd early terminated online streaming feature selection. With the
n-depth analysis of the reasons for early termination, we point
ut two properties that the mapping function should satisfy to
erminate the selection before the end while maintaining com-
eting performance. Then, we introduce the dependency degree
n Rough Set theory and demonstrate that it satisfies these two
arly terminated properties. After that, we propose our new early
erminated online streaming feature selection framework, named
SFS-ET. Finally, we discuss the time complexity of our new
ramework.

.1. Problem definition

efinition 1 (Online Streaming Feature Selection). Let {ft |t =

1, . . . , T } be a sequence of streaming features, where ft ∈ Rn×1

is a pattern of n samples received at the tth time. D ∈ Rn×1 is the
observed class labels of the n samples. At timestamp t , we get
a new feature ft and should decide whether retain or discard ft
on the fly. Meanwhile, the discarded features cannot be selected
again. Suppose the selected feature subset is St at timestamp t ,
the number of features in St is s (s ≤ t), and h : Rn×s

→ R is the
mapping function which measure the quality of selected features.
Online streaming feature selection aims to maximize the quality
of selected features at each timestamp t , defined as follows:

Max h(St ). (1)

For streaming features, if the feature space is extraordinarily
immense or even infinite, is it necessary to wait for all the fea-
tures to arrive? There are three main reasons for early terminated
online streaming feature selection. (1) The streaming features are
infinite, and it is impractical to wait for all features to arrive. (2)
The currently selected features have satisfied the requirement,
so it is unnecessary to wait for more features and waste much
more time. (3) The time cost of waiting is too high to have
to end the selection as soon as possible. In other words, if the
currently selected features are good enough and the expectation
of the increase for the future arriving features is much lower
than the cost of time consumption, it is worthy of terminating
the selection immediately. Thus, it is an exciting issue to study
whether we can terminate the streaming feature selection early
for efficiency while maintaining satisfactory performance.
 B

5

Definition 2 (Early Terminated Online Streaming Feature Selection).
For a streaming feature selection method, suppose the mapping
function is h(St ) for the selected feature subset St at timestamp t .
Let φ(t, t +w) denote the expected increase of mapping function
from timestamp t to t + w, and ϕ(t, t + w) denote the cost of
time consumption from timestamp t to timestamp t + w. Then,
we should terminate the selection at timestamp t and return the
currently selected feature subset St if:

• h(St ) satisfies the requirement;
• OR φ(t, t + w) < ϕ(t, t + w).

For filter mode feature selection methods, them usually adopt
greedy strategies. In each round, they always choose the best
features so far. With a specific mapping function h, we aim
to increase h(S) with the new selected features. During online
streaming feature selection, which features will arrive in the
upcoming period can be independent of the history. Thus, to
terminate the selection safely, the mapping function h() must
have an upper bound and be non-decreasing.

Definition 3 (Early Terminated Mapping Function). For a streaming
feature selection method, suppose the mapping function is h(St )
for the selected feature subset St at timestamp t . In order to
terminate the selection safely, h() must satisfy the following two
properties:

• 1◦. For ∀St , h(St ) ≤ λ, where λ is a definite constant;
• 2◦. For ∀St , h(St ) ≤ h(St+1).

We call h() is an early terminated mapping function.

Specifically, the primary motivation that we should terminate
the selection early is (1) the currently selected features are ‘‘good
enough’’; or (2) the expected increase in mapping function is
lower than the cost of time consumption. Thus, property 1◦ is
used to judge whether the currently selected feature is ‘‘good
enough’’, while property 2◦ makes it possible to predict the future
growth of the early terminated mapping function.

Theorem 1. For ∀t ∈ {1, 2, . . . ,+∞}, suppose h(St+1) ≥ h(St )
and h(St ) ≤ λ, then when t → +∞, h(St ) has a finite limit.

Proof. For ∀t , h(St ) ≤ λ, ∴ h(St ) has a supremum and suppose
it is A. Given an arbitrary number ε > 0, ∵ Sup{h(St )} = A,
∴ there must have a t ′ which makes h(St

′

) > A − ε. ∵ For ∀t ,
(St+1) ≥ h(St ), ∴ when t > t ′, h(St ) ≥ h(St

′

) > A−ε. Meanwhile,
For ∀t , h(St ) ≤ A < A + ε, ∴ when t > t ′, |h(St ) − A| < ε. ∴
(St ) has a finite limit.

According to Theorem 1, even the feature streams are infinite,
nd they always have a finite limit for the satisfied mapping
unction. Thus, with an appropriate mapping function, we can
redict the expectation and terminate the selection correctly.

.2. A satisfied early terminated mapping function

First, let us take a brief introduction to the Rough Set theory
nd the definition of the dependency degree. For the classical
ough Set model [38], in terms of feature subset B, the objects
ith the same feature values are drawn together and form an
quivalence class, denoted by [x]B. The family of elemental gran-
les {[xi]B | xi ∈ U} builds a concept system to describe an
rbitrary subset of the sample space. Let U = {x1, x2, . . . , xn}
enote a nonempty set which contains all the samples, where xi
enotes the ith sample. For feature subset B and sample subset
(X ⊆ U), the elemental granules of lower approximation and
pper approximation are defined as follows:

X = {[x ] | [x ] ⊆ X, x ∈ U} (2)
i B i B i
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able 1
nalysis of some existing streaming feature selection methods.
Methods Type Technique Main advantages Main disadvantages

Grafting Embedded Stagewise gradient descent Can have a single global optimal solution High time cost and difficult to choose a
good value for the regularization parameter

Alpha-investing Filter Penalized likelihood ratio Easy to implement and run very fast Does not reevaluate the selected features
OSFS Filter Conditional independence

an dependence tests
Can achieve better compactness High time complexity and need a large

number of training instances
SAOLA Filter Mutual Information Can handle extremely high dimensionality

data and highly scalable
Only consider pairwise correlations
between features

GFSSF Filter Mutual Information Work on both the group and individual
feature levels

Need to specify parameter in advance and
can only handle discrete data

OSFSMI Filter Mutual information Low computational cost and can generate
more robust results

Cannot consider the selected features as an
integral

OS-NRRSARA-SA Filter Classical rough set Does not require any domain knowledge Cannot handle continuous data directly
K-OFSD Filter Neighborhood rough set Design for high-dimensional and

class-imbalanced data
Need to specify parameter in advance

OFS-A3M Filter Neighborhood rough set Non-parametric Unfit the dataset with unbalanced sample
distribution

OFS-Density Filter Neighborhood rough set Fuzzy equal constraint Cannot handle discrete data well
BX = {[xi]B | [xi]B ∩ X ̸= ∅, xi ∈ U} (3)

The upper approximation is the minimal union of elemental
granules containing X , and the lower approximation is the maxi-
mal union of elemental granules consistently contained in X . The
ower approximation is also called the positive region, denoted as
OSB.

efinition 4. For an arbitrary feature subset B and the decision
eature (class attribute) D, the dependency degree of B to D is
defined as the ratio of consistent objects:

γB(D) =
CARD(POSB(D))

|U |
(4)

where CARD(POSB(D)) denotes the number of positive region ob-
jects.

Obviously, 0 ≤ γB(D) ≤ 1.

Theorem 2 ([39]). Suppose B is a subset of conditional features, f is
an arbitrary conditional attribute that belongs to the dataset, and D
is the decision attribute. Then γB∪f (D) ≥ γB(D).

Proof. The proof of this theorem is available in [39] on page 90.

For Rough Set based streaming feature selection, the primary
goal is to maximize γSt (D) at each timestamp t .

Theorem 3. Dependency degree function γSt (D) is an early termi-
nated mapping function.

Proof. According to Definition 4, γSt (D) ≤ 1, thus γSt (D) satisfies
property 1◦ in Definition 3. In terms of Theorem 2, for feature
ft at timestamp t , γSt−1∪ft (D) ≥ γSt−1 (D). Regardless of whether
ft is selected, γSt (D) ≥ γSt−1 (D). So, γSt (D) satisfies property 2◦ in
Definition 3. Thus, γSt (D) is an early terminated mapping function.

Definition 5. Suppose the selected feature subset is S and f ′ is
a feature in S. The significance of f ′ to S can be defined as:

σD(f ′, S) = γS − γS−{f ′}. (5)

For the selected feature subset St at timestamp t , if there exist
a feature f ′(f ′

∈ S) making σD(f ′, S) = 0, then f ′ can be discarded
as a redundant feature.

To illustrate the characteristics of Rough Set-based streaming
feature selection methods, we present a baseline Rough Set-
based streaming feature selection algorithm RS-OSFS, shown as
6

Algorithm 1. We use the classical Rough Set and k-nearest Neigh-
borhood Rough Set models for nominal data and continuous
data.

Definition 6. For feature subset B and instance subset X , we
define the lower and upper approximations in terms of the k-
nearest neighborhood relation as

BKX = {xi | K (xi) ⊆ X, xi ∈ U} (6)

BKX = {xi | K (xi) ∩ X ̸= ∅, xi ∈ U} (7)

where K (xi) denotes the k-nearest neighbors around xi.

We apply RS-OSFS on dataset Nova. The growth trend of
dependency degree and the number of selected features varying
with difference timestamps are shown as Figs. 2 and 3 respec-
tively.

Algorithm 1 Rough Set Based Online Streaming Feature Selection
Baseline Method (RS-OSFS)
Input: k (the number of neighbors for k-nearest Neighborhood Rough
Set model) / none (for classical Rough Set model)
Output: the selected feature set S;
1: S: the selected feature set, initialized to {};
2: Repeat
3: Get a new feature ft at timestamp t;
4: IF γS∪ft (D) > γS (D)
5: S = S ∪ ft ;
6: END IF
7: Until no more features are available;
8: return S;

From Fig. 3, we can observe that RS-OSFS only selects 16 new
features among 2000 streaming features from timestamp 8000 to
10,000. Meanwhile, for the following 6969 features, RS-OSFS se-
lects less than 20 new features among them. Meanwhile, in Fig. 2,
the dependency degree of the selected feature subset increased
slowly or even no longer increased after a certain number of
features have arrived (or after a particular timestamp). For dataset
Nova, after the arrival of 12,000 features, the dependency degree
of the selected feature subset nearly reaches the maximum. Thus,
we can terminate the streaming feature selection early before the
end.

3.3. Early terminated streaming feature selection framework

The key issue for early terminated online streaming feature
selection is how to choose the proper terminated timestamp t .



P. Zhou, P. Li, S. Zhao et al. Applied Soft Computing 113 (2021) 107993

w
d
m
s
A
n
p
u

t
p

s
T
i
t
t
f
0
w
T
i
ϕ
w
f

i
a
d
d
o
f
b
u
d
F
g
w
w
M
v

d
t
t
t
S

3

i
h
s
t
g
t
o
w
t

a
i
b
T

4

4

4

i
[

4

l
s
o

Fig. 3. The growth trend of the number of selected features on Nova varying
with different timestamps. The growth rate is very slow after timestamp 8000.

The native idea for this is to specify a threshold α(α < λ) and
e terminate the selection when γ (St ) ≥ α. However, this is
ifficult or even unrealistic for real-world datasets. There are two
ain reasons: (1) Without the information of the entire feature
pace before learning, it is difficult to specify the value of α. (2)
lthough the maximal value of γS(D) is one theoretically, it can-
ot always be reached. For real-world datasets, an inappropriate
arameter value of α may never be reached. Thus, we cannot just
se a predefined threshold for termination.
For early terminated online streaming feature selection, at

imestamp t , according to Definition 2, we need to solve two
roblems:

• (1) how can we define ϕ(t, t + w).
• (2) how can we estimate the value of φ(t, t + w);

For problem (1), suppose we can require one feature per
econd. From timestamp t to t + w, we need to wait w seconds.
he main reason we terminate the selection early is the expected
ncrease of the mapping function for the next w features lower
han the cost of time consumption. For example, we can afford
he wait of 100 more seconds if the increase of the mapping
unction is bigger than 0.01. Then, w = 100, and ϕ(t, t + 100) =

.01. We want to terminate the selection early before the end
hile without much loss in the increase of mapping function.
herefore, it is necessary to consider the growing trend in a large
nterval for future arrival features to avoid local stagnation. Thus,
(t, t + w) consists of two factors: (1) the number of features w
e can afford to wait; (2) the least expected increases of mapping

unction from these w features
For high-dimensional datasets, there are a large number of

rrelevant and redundant features. For a new arriving feature ft
t timestamp t , if ft can increase the dependency degree of S, we
o not need to consider terminating the selection. However, if ft is
iscarded and the last arrived w−1 features bring a small increase
r even no increase to the dependency degree of the selected
eature subset, then we can check whether the selection should
e terminated. Therefore, for the problem (2), at timestamp t , we
se the increase of the last arrived w features to estimate the
ependency degree at timestamp t +w. Specifically, according to
ig. 2, we observe that the growth trend of dependency degree is
radually slowing down. Thus, if the increase of the last arrived
features (γ (St ) − γ (St−w)) is smaller than ϕ(t, t + w), φ(t, t +

) has a high probability of being smaller than ϕ(t, t + w).
eanwhile, to avoid local stagnation, we should specify a larger
alue of w in practice.
 c

7

Based on this, we propose the Early Terminated Online
Streaming Feature Selection framework, named OSFS-ET, as
shown in Algorithm 2.
Algorithm 2 Early Terminated Online Streaming Feature Selec-
tion Framework (OSFS-ET)
Input: w: the number of features expected to wait;
β: the dependency degree expected to increase;
Output: the selected feature set S;
1: S: initialized to {};
2: depArray = [], depSet = 0;
3: Repeat
4: Get a new feature ft at timestamp t;
5: depNew = h(S ∪ {ft });
6: depArray[t] = depNew
7: IF depNew > depSet
8: S = S ∪ {ft };
9: depSet = depNew;
10: END IF
11: IF depNew − depArray[t−w] < β

12: remove redundant features in S;
13: terminate the selection and goto step 16;
14: END IF
15: Until no more features are available;
16: return S;

At timestamp t , if the new arriving feature ft can increase the
ependency degree of S, it will be selected into S in Step 8. With
he predefined parameter values of w and β , if the increase of
he last arrived w features is smaller than β , OSFS-ET removes
he redundant features in Step 12 and terminates the selection in
tep 13.

.4. The time complexity of SFS-ET

For different feature mapping functions, the time complexity
s different. Suppose the time complexity of the mapping function
() is O(h). From step 5 to step 10, the time complexity is O(h). In
tep 12, we remove redundant features in terms of Eq. (5) and the
ime complexity is O(|S| ∗h). This paper uses the dependency de-
ree of Rough Set theory as the target mapping function, and the
ime complexity of O(h) is O(n2). Therefore, the time complexity
f OSFS-ET is O(|S| ∗ n2). OSFS-ET gets the worst time complexity
hen the online streaming feature selection algorithm selects all
he features, |S| = m. Thus, the worst time complexity is O(m∗n2).

However, for real-world applications, it is unrealistic to select
ll the features. Meanwhile, according to the experiment results
n Section 4, OSFS-ET always terminates the selection very early
efore the end (about one-third of the entire feature streams).
hus, OSFS-ET can run very fast with early termination.

. Experiments

.1. Experimental settings

.1.1. Datasets
In this section, we apply the proposed OSFS-ET and its compet-

ng algorithms on twelve real-world high-dimensional datasets
40,41],1 as shown in Table 2.

.1.2. Evaluation metrics
We use two basic classifiers, KNN(k = 9) and SVM (with the

inear kernel) in Matlab R2017a, to evaluate a selected feature
ubset in our experiments. We perform 5-fold cross-validation
n each dataset. Feature selection is training on 4/5 samples and

1 Public available at http://www.cs.binghamton.edu/~lyu/KDD08/data/, http://
sse.szu.edu.cn/staff/zhuzx/Datasets.html, http://archive.ics.uci.edu/ml/index.php.

http://www.cs.binghamton.edu/~lyu/KDD08/data/
http://csse.szu.edu.cn/staff/zhuzx/Datasets.html
http://csse.szu.edu.cn/staff/zhuzx/Datasets.html
http://archive.ics.uci.edu/ml/index.php
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able 2
eal-world datasets.
Index Datasets Instances Features Classes Type

1 Srbct 63 2308 4 Real
2 Lymphoma 62 4026 3 Real
3 Prostate 102 6033 2 Real
4 Dlbcl 77 7129 2 Integer
5 Leukemia 72 7129 2 Real
6 Arcene 200 10,000 2 Integer
7 LungCancer 181 12,533 2 Real
8 Ovarian 253 15,154 2 Real
9 Breast 97 24,481 2 Real
10 Madelon 2000 500 2 Integer
11 Gina 3153 970 2 Integer
12 Gisette 6000 5000 2 Integer

testing on the rest 1/5. All competing algorithms use the same
training and testing data for each fold. The order of streaming
features is random, and we run ten times for each dataset.

To validate whether there is a significant difference in predic-
ion accuracy and running time, we conduct the Friedman test
t a 95% significance level under the null-hypothesis and the
emenyi test as a post-hoc test [42].

.1.3. Comparing algorithms
We compare OSFS-ET with seven state-of-art streaming fea-

ure selection methods, including: Alpha-Investing [17], Fast-
SFS [14], GFSSF [29], SAOLA [28], OSFSMI [30], OFS-A3M [20],
nd OFS-Density [21]. All algorithms mentioned above are im-
lemented in MATLAB2 [43], and GFSSF is implemented by our-
elves. For Alpha-investing, the parameters are set to the values
sed in [17]. The significance level is set to 0.01 for Fast-OSFS,
AOLA, and OSFSMI. We apply the k-nearest neighborhood rough
et model in OSFS-ET for nominal datasets to calculate the de-
endency degree, and the value of k is set to 9 as the KNN
lassifier.

.1.4. Streaming simulation
To simulate a natural feature stream environment, we specify

ach dataset in Table 2 to generate features one by one over
ime. The generation speed is set as one feature per 0.1 s in our
xperiments. In other words, we send one random feature to the
lgorithm every 0.1 s until there are no features in the target
ataset. In real-world applications, we may need much more than
.1 s to require a new streaming feature.

.1.5. Computational device
All experimental results are conducted on a PC with AMD(R)

700X, 3.6 GHz CPU, and 32 GB memory.

.2. Analysis of parameters

In OSFS-ET, the parameters w and β are related. For example,
e can expect the increase of the next 100 features reaching 0.01
r the next 200 features reaching 0.02. For the convenience of
arameters analysis, we fix the value of β as 0.01 and test differ-
nt values of w = 100, 200, 400, 600, 800, 1000. The predictive
ccuracy on KNN and SVM varying with different values of w on
atasets Srbct, Prostate, Dlbcl, Arcene, Breast, and Gisette can be
een as Fig. 4. Besides, Fig. 5 shows the dependency degree of
he final selected feature subset and the terminated ratio of the
hole streaming feature space varying with different values of w

n these six datasets.

2 Public available at https://github.com/kuiy/LOFS and https://github.com/
oodzhou/OSFS.
8

Table 3
The average ranks varying with different values of w.

w = 100 w = 200 w = 400 w = 600 w = 800 w = 1000

KNN 5.6667 4.7500 3.3750 3.0417 2.2083 1.9583
SVM 5.6250 4.6250 3.4167 2.9167 2.2083 2.2083
Dependency
degree

6.0000 5.0000 3.9167 2.8333 1.8750 1.3750

Terminated
ratio

1.0000 2.0000 3.1250 4.1667 4.9167 5.7917

The p-values of the Friedman test on KNN, SVM, dependency
degree, and terminated ratio are 5.5038e−10, 2.6727e−08, and
3.2153e−31, 6.1388e−32 respectively. Thus, there is a significant
difference among these six cases on the predictive accuracy, de-
pendency degree, and terminated ratio of final selected features.
According to the Nemenyi test, the value of CD (critical difference)
is 2.1764. We list the average ranks in Table 3.

From Figs. 4, 5, and Table 3, we have the following observa-
tions:

• On predictive accuracy, according to the statistical test, w =

1000 gets the best performance in both cases of KNN and
SVM. There is a significant difference between w = 100, 200
and w = 1000 on predictive accuracy. Meanwhile, there is
no significant difference between w = 400, 600, 800 and
w = 1000. A too-small w(w = 100, 200) will terminate
the selection too early and cannot guarantee satisfactory
performance. In general, with the increase of w, OSFS-ET
checks and selects more streaming features, and the fi-
nal dependency degree can be bigger at the same time.
However, a bigger value of dependency degree does not
necessarily mean better predictive accuracy. If there are
many irrelevant and redundant features in the datasets, such
as Dlbcl, Breast, and Arcene, more selected features may
decrease the performance. Thus, the parameter w should
big enough and can get the best performance with different
values for different datasets.

• On the dependency degree of the final selected features,
w = 1000 gets the maximal dependency degree among
these six different parameter values. In total, with the in-
crease of w, the dependency degree of final selected features
will increase too. However, there is no significant difference
between w = 600, 800 and w = 1000. When the value of w
is big enough, the increase in the value of the dependency
degree is very limited. This demonstrates that our proposed
method can terminate the selection early with only a small
loss in the final dependency degree when w is big enough.

• On the terminated ratio of the whole streaming feature
space, the values grow almost linearly from w = 100 to
1000. The terminated ratios grow fast when the dimension
of target datasets is very low, such as dataset Srbct. For
high-dimensional datasets, the maximal terminated ratio is
less than 0.3 even w = 1000. This indicates that OSFS-ET
can save much waiting time for high-dimensional datasets
while maintaining a competing performance on dependency
degree and predictive accuracy.

In sum, with the increase of w, the dependency degree of
he final selected feature subset and the terminated ratio of the
hole streaming feature space grows linearly. However, the final
ependency degree and predictive accuracy are not affected too
uch when the value of w is big enough. Thus, with a proper
alue of w, we can terminate the streaming feature selection early
nd get a competing performance. In the following experiments,
e set w = 800 as an experience value. For dataset Madelon and
ina, the total numbers of features are 500 and 970, respectively.
hus, we set w = 200 for these two datasets.

https://github.com/kuiy/LOFS
https://github.com/doodzhou/OSFS
https://github.com/doodzhou/OSFS
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Fig. 4. Predictive accuracy on KNN and SVM varying with different values of w.
Fig. 5. The dependency degree of final selected feature subset and terminated ratio varying with different values of w.
.3. OSFS-ET vs. State-of-art streaming feature selection methods

In this section, we compare OSFS-ET with some state-of-art
treaming feature selection methods, including: Alpha-Investing
17], Fast-OSFS [14], GFSSF [29], SAOLA [28], OSFSMI [30], OFS-
3M [20], and OFS-Density [21].
9

Tables 4 and 5 summarize the predictive accuracy of these
competing algorithms using the KNN and SVM classifiers. Tables 6
and 7 show the running time and the mean number of selected
features for these competing algorithms. Table 8 presents the
terminated ratio of OSFS-ET on these datasets. The p-values of the
Friedman test on KNN, SVM, running time, and the mean number
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SFS-ET vs. competing algorithms with KNN.
Dataset OSFS-ET Alpha-Investing Fast-OSFS GFSSF SAOLA OSFSMI OFS-A3M OFS-Density

Srbct 0.9301 0.3843 0.6971 0.4378 0.708 0.7449 0.9442 0.8492
Lymphoma 0.9633 0.8567 0.925 0.745 0.9483 0.915 0.9233 0.9567
Prostate 0.87 0.702 0.882 0.617 0.883 0.913 0.879 0.924
Dlbcl 0.8707 0.8027 0.8507 0.748 0.904 0.84 0.872 0.872
Leukemia 0.9029 0.76 0.9171 0.6329 0.9386 0.9043 0.9057 0.94
Arcene 0.7845 0.6925 0.7 0.6425 0.646 0.683 0.772 0.7705
LungCancer 0.9739 0.8561 0.975 0.835 0.9833 0.9667 0.97 0.9789
Ovarian 0.9881 0.9585 0.9984 0.7466 0.9913 0.9766 0.9917 0.992
Breast 0.5947 0.5737 0.6632 0.5421 0.6421 0.6684 0.6263 0.5421
Madelon 0.8794 0.6896 0.5883 0.5194 0.5633 0.6267 0.5019 0.5019
Gina 0.943 0.9236 0.8669 0.6622 0.8268 0.7695 0.8443 0.829
Gisette 0.9609 0.9339 0.8626 0.7476 0.9133 0.9066 0.9507 0.9257

AVG. 0.8818 0.7454 0.8239 0.6480 0.8213 0.8189 0.8391 0.8323
AVG. RANKS 3.0833 5.6667 3.8333 7.7083 3.7500 4.8333 3.7500 3.3750
Table 5
OSFS-ET vs. competing algorithms with SVM.
Dataset OSFS-ET Alpha-Investing Fast-OSFS GFSSF SAOLA OSFSMI OFS-A3M OFS-Density

Srbct 0.9524 0.3655 0.7526 0.4085 0.7941 0.7848 0.9414 0.8655
Lymphoma 0.955 0.8533 0.915 0.7533 0.9317 0.8867 0.9417 0.9467
Prostate 0.855 0.722 0.896 0.642 0.869 0.912 0.868 0.922
Dlbcl 0.8787 0.8027 0.8573 0.7533 0.9067 0.8547 0.876 0.8827
Leukemia 0.9171 0.7771 0.9257 0.6629 0.9557 0.9271 0.9086 0.9371
Arcene 0.7965 0.6865 0.707 0.627 0.656 0.6915 0.7735 0.7405
LungCancer 0.9761 0.8611 0.9806 0.8311 0.9883 0.98 0.9778 0.9794
Ovarian 0.9937 0.9988 1 0.7717 0.9917 0.977 0.9924 0.992
Breast 0.6053 0.5632 0.6368 0.4632 0.6368 0.6842 0.5842 0.5789
Madelon 0.6148 0.6121 0.6113 0.5246 0.6033 0.6146 0.4912 0.4921
Gina 0.8697 0.8685 0.8434 0.673 0.8211 0.7733 0.8253 0.8123
Gisette 0.9513 0.971 0.8586 0.7559 0.9101 0.8691 0.9233 0.8806

AVG. 0.8638 0.7568 0.8320 0.6555 0.8387 0.8295 0.8419 0.8358
AVG. ranks 2.8333 5.3333 3.8750 7.7500 3.7083 4.4167 4.2500 3.8333
Table 6
SFS-ET vs. competing algorithms on running time (seconds).
Dataset OSFS-ET Alpha-Investing Fast-OSFS GFSSF SAOLA OSFSMI OFS-A3M OFS-Density

Srbct 164.37552 230.8381 230.9804 231.0358 231.0361 231.1129 231.4123 231.3791
Lymphoma 91.91844 402.7656 403.0678 403.3025 403.4002 404.3673 403.5953 403.7921
Prostate 165.9691 603.6197 603.7551 605.1014 603.8984 604.5919 605.8381 605.7123
Dlbcl 119.87406 713.5553 713.4179 714.6096 713.5833 714.0763 715.1124 715.0268
Leukemia 147.50412 713.3263 713.4408 714.5696 713.7111 714.0995 714.9921 714.8043
Arcene 102.4125 1001.4564 1000.9277 1005.8441 1001.4744 1003.2078 1011.2401 1012.2934
LungCancer 122.3184 1254.5654 1255.0218 1258.5482 1256.21 1258.0364 1266.4384 1265.3466
Ovarian 145.01134 1521.5953 1517.7559 1524.1189 1517.6255 1523.009 1542.3416 1541.0659
Breast 86.1621 2451.8381 2449.5551 2460.8634 2449.8293 2450.1306 2458.5503 2459.6492
Madelon 181.4094 50.0854 50.0636 51.521 50.0402 50.0429 219.1359 218.3765
Gina 417.4275 102.301 119.8029 106.5134 97.2163 97.392 473.4378 563.4573
Gisette 2301.0541 1122.1065 549.6397 947.8269 502.1072 502.8906 10346.1451 11167.5612

AVG. 337.1 869.1 800.3 836.2 795.0 796.0 1665.6 1741.4
AVG. ranks 2.2500 3.0833 2.9167 5.4167 3.1667 4.5000 7.4167 7.2500
of selected features are 2.4793e−06, 1.0320e−05, 1.4469e−13,
nd 2.7008e−16, respectively. Thus, these algorithms have a sig-
ificant difference in predictive accuracy, running time, and the
ean number of selected features. According to the Nemenyi test,

he value of CD (critical difference) is 3.0335.
From Tables 4 to 8, we can observe that:

• On predictive accuracy, OSFS-ET gets the highest average
accuracies and lowest average ranks in both cases of KNN
and SVM. Thus, according to the statistical test, OSFS-ET
performs best among these eight competing algorithms.
Meanwhile, OSFS-ET gets five of the ten best performances
with KNN and SVM, respectively. From Table 8, we can see
that the final dependency degree of OSFS-ET can achieve
a very high value even it terminates the selection early.
For example, on datasets Lymphoma, LungCancer, Ovarian,
and Gisette, the dependency degree of selected features
10
nearly achieve the maximal value 1 while the terminated
ratio just around 0.2 or even less than 0.1. Thus, although
our new method terminates the streaming feature selection
very early before the end (0.3 on average), it still can get
outstanding performance on predictive accuracy compared
with other streaming feature selection methods.

• On the running time, OSFS-ET is the fastest while OFS-
A3M and OFS-Density are the slowest. For Rough Set mod-
els, the time complexity of dependency degree calculation
is O(n2), where n is the number of instances in datasets.
For high-dimensional small sample datasets, OSFS-ET termi-
nates the selection very early and can save much waiting
time compared with other competing algorithms. However,
for low-dimensional large sample datasets, such as Madelon
and Gina, OSFS-ET spends much more time than those not
Rough Set-based algorithms. Thus, with the early termi-
nation during streaming feature selection, the higher the
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SFS-ET vs. competing algorithms on the mean number of selected features.
Dataset OSFS-

ET
Alpha-
Investing

Fast-
OSFS

GFSSF SAOLA OSFSMI OFS-
A3M

OFS-
Density

Srbct 35.46 1.6 4.48 3.04 18.52 7.34 7.58 5.84
Lymphoma 18.18 3.6 5.5 2.86 39.26 7.78 3.66 10.52
Prostate 35.38 2.18 3.34 3.7 12.94 7.54 20.02 5
Dlbcl 30.48 5.92 4.38 2.94 14.14 7.16 20.36 7.12
Leukemia 35.74 2.54 4.6 3 22.44 8.34 11.7 4.48
Arcene 54.12 5.72 5.24 5.32 17.66 8.64 36.24 21.74
LungCancer 36.14 2.42 6.96 3.64 48.98 9.7 5.9 9.1
Ovarian 23.34 53.76 5.48 4.22 8.36 10.46 3.3 8.6
Breast 24.9 4.7 4.1 3.5 18.7 7.1 27.3 12.6
Madelon 16.8 5.2 5.4 6.4 7.4 4 2 2
Gina 118.8 88 20.9 12.4 12.3 7.4 24.1 10.4
Gisette 103.4 750.2 2.2 29.4 23 16.8 63.4 14.8

AVG. 44.3 77.1 6.0 6.7 20.3 8.5 18.7 9.3
AVG. ranks 7.5833 3.5000 3.0000 2.5833 5.9167 4.3333 5.1250 3.9583

Table 8
The terminated ratio and final dependency degree of OSFS-ET.
Dataset Final dependency degree Terminated ratio

Srbct 0.8583 0.7094
Lymphoma 0.9783 0.2274
Prostate 0.886 0.273
Dlbcl 0.9347 0.1674
Leukemia 0.8957 0.2058
Arcene 0.79 0.1008
LungCancer 0.9933 0.096
Ovarian 1 0.0926
Breast 0.6474 0.035
Madelon 0.5506 0.95
Gina 0.8209 0.665
Gisette 0.9519 0.184

AVG. 0.8589 0.3088

dimensionality of the datasets, the more pronounced the
time savings for our new method. Meanwhile, compared
with other Rough Set-based online streaming feature selec-
tion methods, OSFS-ET can significantly reduce the running
time and make up for the shortcomings caused by the high
time complexity.

• On the mean number of selected features, according to the
average ranks, OSFS-ET selects the most number of fea-
tures, while GFSSF selects the least. However, GFSSF gets
the worst performance at the same time. To terminate the
streaming feature selection early, OSFS-ET selects features
as long as it can increase the dependency degree of the
selected feature subset and remove redundant features once
after the termination. Thus, OSFS-ET selects more features
than other competing algorithms. However, the number of
selected features for OSFS-ET is still tiny to the dimensions
of the entire feature space. Meanwhile, OSFS-ET gets the
best performance on predictive accuracy with these selected
features.

In general, our new early terminated method can be far faster
han the competing state-of-art streaming feature selection al-
orithms for high-dimensional datasets while maintains an out-
tanding performance on predictive accuracy.

. Conclusion

In this paper, we study the exciting issue of how to terminate
he online streaming feature selection early while maintaining
satisfactory performance for the first time. An assumption is
roposed that the online streaming feature selection can be ter-
inated early if the expected increase of mapping function is
11
much lower than the time consumption cost for the follow-
ing arriving features. Based on this, we first present a formal
definition on this issue and summarize two properties that the
early terminated mapping function should satisfy. We choose
the dependency degree function in Rough Set theory as our
early terminated mapping function and propose a new frame-
work that can terminate the online streaming feature selection
early while maintaining a competing performance using the cur-
rently selected features. Extensive experiments on twelve real-
world datasets demonstrate that our new framework can sig-
nificantly reduce waiting time while maintaining an outstanding
performance on predictive accuracy.

Our new framework needs to specify two parameters (the
number of features expected to wait and the dependency degree
expected to increase) before learning. However, the framework
cannot terminate the selection early if the parameter values we
set are too big. On the contrary, if parameter values are too small,
the framework may terminate the selection too early to be good
enough. Besides, we choose the dependency degree function in
Rough Set theory as the early terminated mapping function in this
paper. Nevertheless, we should notice that our new framework
can be applied with other mapping functions that satisfy the two
properties mentioned in the problem definition. As we know,
Rough Set models have high time complexity. Thus, in terms of
these two properties, more new efficient mapping functions will
be considered in our future work.
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