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a b s t r a c t

In real-world applications, features can be generated continuously one by one or by groups, such
as image analysis and physical examination. Online streaming feature selection deals with streaming
features on the fly. Existing streaming feature selection methods focus on removing irrelevant and
redundant features and selecting the most relevant features, but they ignore the interaction between
features. Interacting features appear to be irrelevant or weakly relevant to the class individually.
However, if they are combined, they may highly correlate with the class. Features within the same
group are more likely to interact with each other. Therefore, in this paper, we focus on feature
interaction within and between the streaming groups and propose an Online Group Streaming Feature
Selection method that can select Features to Interact with each other, named OGSFS-FI. OGSFS-FI
consists of two stages: online intra-group selection and online inter-group selection. For intra-group
selection, we design a new pair selection strategy that can select features interacting with each other.
For inter-group selection, we use the regularization and variable selection method elastic net, which
encourages a grouping effect. Extensive experiments conducted on synthetic and real-world datasets
demonstrate our new method’s efficiency and effectiveness.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Feature selection aims to select a minimal size subset of the
eature space, which can retain the optimum salient characteris-
ics necessary from the original data sets [1]. Traditional feature
election methods assume that all features are presented to a
earner before learning takes place [2]. Nevertheless, in real-
orld applications, such as image analysis [3] and Mars crater
etection [4], not all features can be presented before learning.
treaming features are defined as features that flow in one by
ne or by groups over time, whereas the number of training
xamples is fixed [5,6]. Streaming feature selection, which deals
ith streaming features online, has attracted much attention in
ecent years [7].

Furthermore, streaming feature selection can be divided into
wo categories: individual streaming feature selection and group
treaming feature selection, such as OSFS (Online Streaming Fea-
ure Selection) [5] and OGFS (Online Group Feature Selection) [8]
espectively. In real-world applications, features man be gen-
rated in groups and can be required in streams. The various
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inspection items in a physical examination project is a typical
example of this. For the same person, different inspection items
generate different groups of features, such as blood routine ex-
amination, urine routine examination, ECG (Electrocardiograph),
etc. Each inspection generates its features independently at a
different time. For the whole examination project, features are
generated separately and flow in a group by a group over time.
Another example is the environmental monitoring and analy-
sis [9]. Researchers may deploy many sets of observation stations
in different areas. Each station may have several monitors treated
as a group of objects in the data collection. In other words, the
number of data groups (objects) is fixed. However, the number
of features in temporal domains keeps increasing.

Fig. 1 shows the details of traditional feature selection and on-
line group streaming feature selection. For online group stream-
ing feature selection, the features arrived by groups. At each
timestamp, we have the currently selected feature subset S ′ and
ets the new arriving streaming group G. With the intra-group
election, we gets the new selected feature subset G′. Then, we
rocess the inter-group selection and retain the selected fea-
ure subset S. The algorithm terminated and returned the final
elected features until no more feature groups available.
In general, feature selection focuses on removing irrelevant

nd redundant features from the feature space and selecting
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Fig. 1. The traditional feature selection(a) and online group streaming feature selection(b).
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Table 1
An example of feature interaction problem.
f1 f2 f3 f4 D

0 0 0 0 0
1 0 0 1 1
0 1 0 0 1
1 1 0 1 1
0 0 1 0 1
1 0 1 1 1
0 1 1 0 0
1 1 1 1 1

the most relevant and informative ones. Features can be further
categorized into three disjoint groups: strong relevance, weak
relevance, and irrelevance [10,11]. Irrelevant features provide no
information for the outcome in any context. Redundant features
provide information for the outcome in some context (also called
weak relevance), but they are not necessary for optimal pre-
diction. Besides, an essential but usually being ignored issue is
feature interaction [12]. Interacting features are those that appear
to be irrelevant or weakly relevant with the class individually,
but when the feature is combined with other features, it may
positively correlate to the class [13].

An illustration of this interaction phenomenon is as shown
n Table 1. Let f1, f2, f3 be independent binary random variables.
he output of a given system is built through the function D =
1 + (f2 ⊕ f3), where f4 = f1, ’+ ’ stands for the OR logic function
and ’⊕’ represents the XOR logic function. We use the Mutual
Information [14] I(fi;D) to evaluate the strength of the relevance
etween a feature fi and the class D. In Table 1, we can see

that f2 and f3 have a null relevance individually, i.e., I(f2;D) =
(f3;D) = 0. However, the joint information of I({f2, f3};D) =
.3113 > I(f2;D) + I(f3;D) = 0, in which we call there is an
nteraction between f2 and f3 on D. By contrast, I(f1;D) = 0.3113,
(f ;D) = 0.3113, but I({f , f };D) = 0.3113 < I(f ;D) + I(f ;D).
4 1 4 1 4

2

hen, we denotes that there is a redundancy between f1 and f4 on
. In brief, feature interaction means ‘‘1 + 1 > 2’’ while feature
edundancy denotes ‘‘1+ 1 < 2’’.

For streaming feature selection, we do not know the fea-
ure space before learning. Individual streaming feature selec-
ion methods process features individually during feature select-
ng and cannot handle the feature interaction, such as Alpha-
nvesting [15], OSFS [5], and SAOLA [9]. Meanwhile, existing
roup streaming feature selection approaches do not consider
eature interaction within the groups, such as GFSSF [6], OGFS [8],
nd Group-SAOLA [9]. Besides, many effective and efficient learn-
ng algorithms assume the independence of features. However,
hey may fail badly when the degree of feature interaction be-
omes critical [16]. Most of the above-mentioned streaming fea-
ure selection methods validate the features individually. How-
ver, features may influence the class by grouping rather than by
he individual.

Motivated by this, we focused on feature interaction within
nd between streaming groups and proposed a new online Group
treaming Feature Selection method, named OGSFS-FI. Our main
ontributions are as follows:

• Based on Mutual Information theory, we gave the formal
definition of feature interaction and discussed the relation-
ship between interaction, redundancy, and relevance.
• We present the OGSFS-FI that consists of two components:

intra-group selection and inter-group selection. For intra-
group selection, we designed a new pair selection strategy
that can guarantee the selected features relevant to the class
and interact with each other. For inter-group selection, we
use the regularization and variable selection method, elastic
net, which prefers to select a group of features. Based on
this, OGSFS-FI can efficiently select relevant and interactive
features and remove redundancy ones.
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• To investigate our new method’s effectiveness, experimen-
tal results on synthetic datasets and real-world datasets
demonstrated that OGSFS-FI could select relevant and inter-
active features on the fly.

The rest of this paper is organized as follows. In Section 2, we
describe the related work. In Section 3, some basic information-
theoretic notions are reviewed. Section 4 provides formal defini-
tions of relevance, redundancy, and interaction in the framework
of Mutual Information theory and proposes a new group stream-
ing feature selection algorithm in Section 5. Experimental analy-
ses are presented in Section 6, and we make a brief conclusion in
Section 7.

2. Related work

Generally speaking, feature selection removes irrelevant and
redundant features and selects relevant features from a given
candidate feature space. For example, [17] proposed a novel
neighborhood multi-granulation rough sets based feature selec-
tion method using Lebesgue and entropy measures in incomplete
neighborhood decision systems. From the data perspective, we
can divide feature selection into feature selection with static
data and feature selection with dynamic data [18]. For feature
selection with static data, there are few works considering feature
interaction during the feature selection. More specifically, Jakulin
et al. [12] first formally define the degree of interaction between
attributes through the deviation of the best possible ‘‘voting’’ clas-
sifier from the true relation between the class and the features in
a domain. Furthermore, they introduced an operational definition
of a generalized n-way interaction by highlighting two models:
the reductionistic part-to-whole approximation and the holistic
reference model [16]. Zhao et al. [19] took up the challenge
of feature interaction to design a particular data structure for
the feature quality evaluation and to employ an information-
theoretic feature ranking mechanism to handle feature interac-
tion in the subset selection efficiently. Zeng et al. [13] proposed a
novel feature selection algorithm considering feature interaction.
They defined the interaction weight factor, reflecting whether a
feature is redundant or interactive, and designed an interaction
weight-based feature selection algorithm.

The feature selection with dynamic data can be further divided
into feature selection with data stream and feature selection with
feature stream. In this paper, we focus on the latter. As compared
to traditional feature selection methods that deal with static data,
streaming feature selection assumes that the features flow in one
by one over time. We cannot require the information of the whole
feature space before learning. All these methods mentioned above
are designed for traditional feature selection, and they need the
information of the whole feature space before learning. Therefore,
they cannot handle the streaming feature selection.

There are two significant reasons for streaming feature selec-
tion: (1) the feature space is unknown or even infinite, and (2) the
feature space is known, but feature streaming offers many other
advantages. More specifically, Grafting [20] first considered the
problem of online feature selection and treats feature selection
as an integral part of learning a predictor within a regularized
framework. Information-investing and alpha-investing [15] were
two penalized likelihood ratio methods based on streamwise
regression for online feature selection. OSFS [5] is an online
streaming feature selection framework that contained two major
steps: online relevance analysis (discarding irrelevant features)
and online redundancy analysis (eliminating redundant features).
SAOLA [9] was a Scalable and Accurate Online feature selection
Approach for high dimensional data which employed novel online
pairwise comparison techniques and maintained a parsimonious
3

model over time in an online manner. OS-NRRSARA-SA [21] was
a Rough Set based method for online streaming feature selection
which considered both the boundary and positive regions. [22]
was an extension to the OS-NRRSAR-SA algorithm that contain-
ing two major steps: online redundancy analysis that discards
redundant features, and online significance analysis which elim-
inates non-significant features. K-OFSD [23] was proposed for
high-dimensional and class-imbalanced data in online streaming
feature selection, which is based on the dependency between
condition features and decision classes. OFS-A3M [24] was a
new neighborhood rough relation based streaming feature se-
lection method which can select features with high correlation,
high dependency, and low redundancy in terms of the maximal-
dependency, maximal-relevance, and maximal-significance eval-
uation criteria. ROSFSMI [25] employed Mutual Information in a
streaming manner to evaluate the relevancy and redundancy of
features.

Nevertheless, all these streaming feature selection methods
mentioned above are individual streaming feature selection,
which cannot handle the feature interaction problem. Mean-
while, considering the group structures of feature streams, group
streaming feature selection was proposed. GFSSF (Group Feature
Selection with Streaming Features) [6] first performed group
feature selection with streaming features that can work at both
the group and individual feature levels for streaming feature
selection exploiting entropy and Mutual Information in infor-
mation theories. OGFS (Online Group Feature Selection) [8] was
an efficient online feature selection framework using the prior
knowledge of group information, which consisted of two stages
as the intra-group feature selection and inter-group features
selection. Group-SAOLA [9] extends the SAOLA algorithm, and it
can select feature groups that are sparse at the levels of both
features and groups.

However, all these group streaming feature selection
approaches do not consider the interaction between features.
Thus, contrary to the approaches mentioned above, we propose
a new group streaming feature selection method considering the
feature interaction during streaming feature selection.

3. Definitions of relevance, redundancy and interaction

In this section, we give a formal definition of feature interac-
tion in terms of Mutual Information theory. Information theory,
proposed by Shannon, provides a way to measure the information
of random variables [26]. The mutual information (MI) is a mea-
sure of the amount of information that one random variable has
about another variable [14]. Multi-information is an extension of
MI that can measure the interaction among more than two vari-
ables [27]. For the case of three variables, the multi-information
is defined as follows:

I(X; Y ; Z) =

{ I(Y ; Z)− I(Y ; Z |X)
I(X; Y )− I(X; Y |Z)
I(X; Z)− I(X; Z |Y )

(1)

The multi-information is symmetrical, such as I(X; Y ; Z) =
(Y ; X; Z).

Mutual information tends to favor features with more values.
n order to solve this problem, a normalized measure of mu-
ual information called the symmetrical uncertainty is used as
ollows [28]:

U(X; Y ) =
2 ∗ I(X; Y )

H(X)+ H(Y )
(2)

The symmetrical uncertainty can compensate for Mutual In-
formation’s bias toward features with more values and restricts
its values to the range [0, 1] by penalizing inputs with large
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ntropies. In our algorithm, we use symmetrical uncertainty for
he information calculating between a feature subset and the
ecision feature in Algorithm 1.
For data with continuous values, we adopt the best-known

easure of Fisher’s Z-test [29] to calculate correlations between
eatures. In a Gaussian distribution Normal(µ, Σ), the population
artial correlation P(X, Y |S) between feature X and the feature Y

given a feature subset S is calculated as follows:

P(X, Y |S) =
−((

∑
XYS)
−1)XY

((
∑

XYS)−1)XX ((
∑

XYS)−1)YY
(3)

In Fisher’s Z-test, under the null hypothesis of conditional
independence between X and Y given S, P(X, Y |S) = 0. With the
given significance level α and the p-value returned by Fisher’s Z-
test p, under the null hypothesis of the conditional independence,
if p > α, X and Y are uncorrelated; otherwise, if p ≤ α, X and Y
are correlated to each other.

For an information system, let C denotes the condition feature
set, and D denotes the decision class. The features in C can be
ategorized into three disjoint groups: strong relevance, weak
elevance, and irrelevance as follows [11]. Based on Markov blan-
ets, Yu and Liu [30] further divided weakly relevant features into
edundant and non-redundant features. First of all, let us define
trong relevance, weak relevance, and irrelevance based on the
utual Information-theoretic framework.

efinition 1 (Strong Relevance, Weak Relevance, and Irrelevance).
iven C and D, f ∈ C ,
(1) f is strongly relevant to D iff ∀S ⊆ C\{f } s.t. I(D; S) ̸=

(D; {S, f });
(2) f is weakly relevant to D iff it is not strongly relevant, and

S ⊂ C\{f } s.t. I(D; S) ̸= I(D; {S, f }).
(3) f is irrelevant to D iff it is neither strongly nor weakly

elevant, and ∀S ⊆ C\{f } s.t. I(D; S) = I(D; {S, f }).

For interactive features, the information of the combined fea-
ure set is bigger than the sum of each feature. Thus, the formal
efinition of feature interaction as follows.

efinition 2 (Interaction). Given C and D, INT ⊆ C . For ∀f ∈ INT .
f I(D; INT ) >

∑
fi∈INT

I(fi;D), the features in INT are said to have
n interaction with each other on D, and we call INT a interactive
eature set.

Let us use the dataset Monks3 in Section 6.2.1 as an example
o illustrate the definition of feature interaction. Meanwhile, we
se Mutual Information to calculate the information between
eatures. We calculate some values as follows.

I(a1; c) = 0.0071, I(a2; c) = 0.2937, I(a3; c) = 8.3111e −
4, I(a4; c) = 0.0029, I(a5; c) = 0.2559, I(a6; c) = 0.0071.
({a2, a4}; c) = 0.3579 > I(a2; c)+I(a4; c) = 0.2966, I({a2, a4, a5};
c) = 0.8678 > I(a2; c) + I(a4; c) + I(a5; c) = 0.5565. According
to Definition 2, the feature subsets {a2, a4} and {a2, a4, a5} are
interactive feature sets.

In general, feature selection aims to select relevant and non-
redundant features from the condition feature set. Nevertheless,
for high-dimensional datasets, the definitions of strong relevance,
weak relevance, and irrelevance are hard to be applied directly,
for we cannot test all the subsets of C . Thus, many feature
selection methods always use a low-dimensional evaluating ap-
proach to judge the feature type. For example, for many Mutual
Information based feature selection methods, if I(f ;D) = 0
or I(f ;D) < α (where α is a user-defined parameter), then f
will be considered as an irrelevant feature [6,9]. As shown in
Table 1, these methods ignore the interaction between features.
For the convenience of discussion, let us consider the relationship
between three variables at first.
4

Theorem 1. Given C and D, f1 ∈ C, f2 ∈ C. If f2 has an interaction
with f1 on D, then I({f1, f2};D) > I(f1;D)+ I(f2;D).

Proof. According to Definition 2, we make INT = {f1, f2}. Because
f2 has an interaction with f1 on D, thus, I(D; INT ) = I(D; {f1, f2}) >∑

fi∈INT
I(fi;D) = I(f1;D)+ I(f2;D).

heorem 2. Given C and D, f1 ∈ C, f2 ∈ C. If f2 has an interaction
ith f1 on D, then I(f1;D|f2) > I(f1;D).

roof. For f2 has an interaction with f1 on D, According to The-
rem 1, I({f1, f2};D) > I(f1;D)+ I(f2;D). I({f1, f2};D) = I(f2;D)+
(f1;D|f2) > I(f1;D)+ I(f2;D). Therefore, I(f1;D|f2) > I(f1;D).

For a random feature f1 in C , I(f1;D) is a measure of the
mount of information that f1 has about D. If there exist feature
2(f2 ∈ C) which can increase the information of f1 about D when
2 is known, f2 is said to have an interaction with f1 on D.

heorem 3. Given C and D, f1 ∈ C, f2 ∈ C. If f2 has an interaction
ith f1 on D, I(f1; f2;D) < 0.

roof. For f2 has an interaction with f1 on D, I(f1;D|f2) >

(f1;D), I(f1;D)− I(f1;D|f2) < 0. According to Eq. (1), I(f1; f2;D) =
(f1;D)− I(f1;D|f2). Thus, I(f1; f2;D) < 0.

According to Theorem 1, when f1 and f2 are interactive with
ach other on D, they provide more information than the sum of
heir individual mutual information. In contrast with interaction,
e give the definition of redundancy as follows.

efinition 3. Given C and D, f1 ∈ C , f2 ∈ C . If I({f1, f2};D) <

(f1;D)+ I(f2;D), f1 and f2 are said to have a redundancy on D.

In another words, when f1 and f2 both provide a part of the
ame information about D, there exists redundancy.

heorem 4. If I(f1; f2;D) > 0, f1 and f2 have a redundancy on D.

roof. According to Eq. (1), I(f1; f2;D) = I(f1;D) − I(f1;D|f2).
or I(f1; f2;D) > 0, then I(f1;D|f2) − I(f1;D) < 0, I({f1, f2};D) −
(f1;D) − I(f2;D) = I(f2;D) + I(f1;D|f2) − I(f1;D) − I(f2;D) =
(f1;D|f2)− I(f1;D) < 0, I({f1, f2};D) < I(f1;D)+ I(f2;D). Thus, f1
nd f2 have a redundancy on D.

A given feature is relevant to the class when either individu-
lly or together with other variables provides information about
ecision attribute D. Thus, relevance should not just consider the
arget feature and class only, but it is conditionally dependent on
. Thus, we define feature relevance as below.

efinition 4 (Relevance). Given C and D, fi ∈ C and ¬fi = C \ {fi}.
eature fi is relevant to the class D if and only if ∃S ⊂ ¬fi, such
hat

(fi;D|S) > 0. (4)

Otherwise, feature fi is irrelevant.

heorem 5. Given C and D, f ∈ C, if ∃f ′ ∈ C, such that I(f ; f ′;D) <

, f is relevant to class D.

roof. For I(f ; f ′;D) = I(f ;D)− I(f ;D|f ′) < 0, I(f ;D|f ′) > I(f ;D).
ecause I(f ;D) ≥ 0, then I(f ;D|f ′) > 0. Assume S = {f ′}.
ccording to Definition 4, f is relevant to class D.
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. Our new online group streaming feature selection approach

In this paper, we focus on the problem of feature interaction
uring online group streaming feature selection. We first give the
roblem formalization of online group streaming feature selec-
ion. For features in the same streaming groups, we design a new
ntra-group selection approach that selects pairs of interactive
eatures at each time in terms of multi-information theory. We
se the elastic net for features between different groups, which
ncourages a grouping effect and tends to select strongly cor-
elated features as a group together. We present a new online
roup streaming feature selection method that considers feature
nteraction within and between streaming groups.

.1. Problem formalization

Let OGSFS = (G, h, t) denote a online group streaming feature
selection framework, where G = ⟨G1,G2, . . . ,Gk⟩ is the streaming
eature set, h is the mapping function from features to classes, and
is the time stamp. Gi = [f1, f2, . . . , fm]T is a group of features

n G which contains m features. It is worth mentioning that not
very Gi needs to contain the same number of features. At each
ime stamp t , we get a new group of features Gt without knowing
he exact number of feature space in advance. The problem of
nline group streaming feature selection aims to select an optimal
eature subset S by using groups of features that have arrived so
ar when the algorithm terminates.

We use the data in Table 1 as an example to illustrate the
eature interaction issue during streaming feature selection. For
ndividual streaming feature selection, f2 and f3 are arriving one
y one at each time and will be discarded one by one for null
elevance to D. We suppose f2 and f3 in the same group for
roup streaming feature selection. If the group streaming feature
election method considers the group’s features individually, both
2 and f3 will not be selected. Thus, we need a new method
hat can consider the feature interaction within and between the
roups.

.2. Our new algorithm

Our new online group streaming feature selection method
an be divided into the intra-group selection and inter-group
election.

.2.1. Intra-group selection
Suppose F = {f1, f2, . . . , fm} contains m(m > 2) features. For a

ig feature set F (m is a large value), according to Definition 1, it
s hard to know whether a feature f (f ∈ F ) is strongly relevant to
lass D, because we cannot test all the subsets in F \ {f }.
For the new arriving streaming feature group Gi which con-

ains m features on a feature space F = {f1, f2, . . . , fm}, suppose
he selected feature subset is S∗ which is initialized to {} at
irst. At each iteration i, we select pairs of features {fi, f ′i } which
atisfied I(fi; f ′i ;D) < 0. Thus, S i = {f1, f ′1, f2, f

′

2, . . . , fi, f
′

i }.

heorem 6. Features in S i are relevant to D.

roof. For each feature f ′ ∈ S i, there exists feature f ′′ which
atisfied I(f ′; f ′′;D) < 0. We make S ′ = {f ′′}, then according to
heorem 4, f ′ is relevant to class D. Thus, the features in S i are
elevant to class D.

According to Theorem 6, if we select a pair of features f ′ and
′′ which satisfies I(f ′; f ′′;D) < 0 at each iteration, both f ′ and f ′′
re relevant to class D.
5

In addition to considering feature interaction, we also need to
elect a compact feature subset. Thus, for features fi and fj, if

(fi;D) > I(fj;D) & I(fi; fj;D) > 0 (5)

hich means fi contains more information about D than that of
j, and fi and fj have a redundancy on D. Then, we can keep fi and
iscard fj.
Meanwhile, the main target of our new method is to select a

eature subset that can maintain maximal information about the
ecision class. If

(fi; fj;D) < 0 & I(St ∪ fi ∪ fj;D) > I(St;D) (6)

hich means there is an interaction between fi and fj on D.
eanwhile, the adding of fi and fj can increase the information
f selected feature subset, then both fi and fj will be considered
o be added into the candidate feature subset.

Besides, for feature fi, if there is no feature fj satisfying Eq. (6),
ut satisfying Eq. (7)

(St ∪ fi;D) > I(St;D) (7)

hich means the adding of fi can increase the information of the
andidate feature subset, we will select fi too.
Based on these, we proposed the new intra-group streaming

eature selection algorithm, named OGSFS − FIintra, as shown in
lgorithm 1.

Algorithm 1 OGSFS − FIintra
Require:

F : the condition attribute set in streaming group Gt ;
D: the decision class of Gt ;

Ensure:
St : the selected feature subset of Gt ;

1: St = {};
2: While (F is not empty)
3: find feature fi in F with the maximal value of I(fi;D);
4: INT = {}, F = F − {fi};
5: For each feature fj in F
6: If fj satisfies Eq. (5) Then F = F − {fj};
7: If fj satisfies Eq. (6) Then F = F − {fj}, INT = INT ∪ {fj};
8: End For
9: IF INT is not Empty
10: St = St ∪ {fi};
11: For each feature f ′ in INT
12: If f ′ satisfies Eq. (7) Then St = St ∪ {f ′};
13: End For
14: Else
15: If fi satisfies Eq. (7) Then St = St ∪ {fi};
16: End If
17: End While
18: return St ;

At timestamp t , suppose the new arriving group is Gt and we
let F denote all the features in Gt . At step 3, we find the feature fi
in S with the maximal value of I(fi;D). For each feature fj ∈ S,
e calculate the multi-information of I(fi; fj;D). At step 6, if fj

satisfies Eq. (5), which means fj has a redundant with fi. Then,
fj will be removed from S. At step 7, if fj has an interaction with fi
and can increase the candidate feature subset information, fj will
be added into INT . From Step 9 to Step 16, if INT is not empty, we
find all the features which interacted with fi and can increase the
candidate feature subset information. Otherwise, if INT is empty,
we will consider selecting a single feature fi at Step 15. When
here are no more features in F , the algorithm will terminate and
return the selected feature set St .

Let us use the data in Table 1 to illustrate our algorithm.
Suppose all the features in Table 1 in the same streaming

group. First of all, we initialize F = {f , f , f , f }, S = {}. Then
1 2 3 4 t
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e calculate each feature’s Mutual Information value in F as:
(f1,D) = 0.3113, I(f2;D) = 0, I(f3;D) = 0, I(f4;D) = 0.3113.
Both f1 and f4 have the maximal value. Thus, we can select f1 or
4 as the first feature. Let us select f1 as the first feature. Then,
t = {f1} and F = {f2, f3, f4}. For each feature in S, I(f1; f2;D) = 0,
I(f1; f3;D) = 0, I(f1; f4;D) = 0.3113. Thus, f1 and f4 are redundant
with each other, and we remove f4 from S. For there are no
features interact with f1, we calculate I(f1; Y ) = 0.3113 > 0. Thus,
St = {f1}, F = {f2, f3}.

Then, we consider f2 as the next candidate feature. St = {f1, f2}
and F = {f3}. For I(f2; f3;D) = −0.3113 and I({f1, f2, f3};D) =
0.8113 > I(f1; Y ), then INT = INT ∪ {f3} = {f3}. For there is only
one feature f3 in INT , thus, St = {f1, f2, f3}, F = {}.

Therefore, the final selected feature subset is {f1, f2, f3}.

.2.2. Inter-group selection
This section introduces the inter-group selection algorithm,

hich aims to obtain a group of features on global group infor-
ation. We propose to solve this problem with the regularization
nd variable selection method, elastic net [31].
Given the selected features in the intra-group selection step
= {G′1,G

′

2, . . . ,G
′
t}, where G′i = {fi1, fi2, . . . , fik}. Suppose X =

∈ Rm′×n denotes the condition feature set, y ∈ Rn denotes the
lass label vector, β = [β1, β2, . . . , βm] denotes the projection
ector. The naive elastic net criterion is defined as:

(λ1, λ2, β) = ∥y− Xβ∥2 + λ1∥β∥2 + λ2∥β∥1 (8)

where ∥ ∼ ∥2 stands for l2 norm, and ∥ ∼ ∥1 stands for l1 norm
f a vector.
The naive elastic net estimator β̂ is the minimizer of Eq. (8):

β̂ = arg minβ{L(λ1, λ2, β)}. (9)

For an α ∈ (0, 1], and a nonnegative λ, elastic net can be
rewrite as:

minβ{∥y− Xβ∥2 + λPα(β)} (10)

where Pα(β) = (1−α)
2 ∥β∥2 + α∥β∥1.

Elastic net is the same as lasso when α = 1. As α shrinks
oward 0, elastic net approaches simple ridge regression.

In the optimization methods, the value of λ is usually deter-
ined by cross-validation. By setting several βi to 0, the features
orresponding to non-zero coefficients will be selected. With
he simultaneously automatic variable selection and continuous
hrinkage, the elastic net can select groups of correlated variables.

.2.3. OGSFS-FI
Our new online group streaming feature selection algorithm

OGSFS-FI) is shown as Algorithm 2. OGSFS-FI is divided into
wo components: intra-group selection and inter-group selection.
etails are as follows.

.3. Time complexity of OGSFS-FI

Suppose the dataset is D, the number of instances in D is n, the
umber of features in D is m, and the number of features in each
roup is mG. At timestamp t , suppose the selected feature subset
s St−1 and the new arriving streaming group is Gt (|Gt | = mG).

For intra-group selection, each feature in Gt will be check once
rom step 5 to step 8, and the worst case of this stage is O(|Gt |).
From step 9 to step 16, if INT is not empty, this stage’s worst time
complexity is O(|Gt |). Thus, the worst time complexity of intra-
group selection is O(|Gt |). Suppose the selected feature subset for
Gt is St and S = St−1∪St . For elastic net, if we stop the algorithm

3 2
after k steps, then it requires O(k + |S| ∗ k ) operations.

6

Algorithm 2 OGSFS − FI
Require:

G: the condition streaming feature set;
Ensure:

S: the selected feature subset;
1: S = {};
2: Repeat
3: Gt ← get a new streaming group of features;
4: /* online intra-group selection */
5: St = OGSFS − FIintra(Gt );
6: S = S ∪ St ;
7: /* online inter-group selection */
8: S ← find the global optimal subset by elastic net algorithm;
9: Utile no more groups arrive
10: return S;

In total, the worst time complexity of OGSFS-FI is O(k3 + |S| ∗
k2). The experimental results in the next section show that the
final selected subset’s size is tiny for OGSFS-FI. Thus, the time
complexity of our method for real-world applications is far less
than the worst case. Meanwhile, we set the maximum number of
iterations to 1000, and it can converge very fast for some datasets.

5. Experimental results

5.1. Experiment setup

This section applies the proposed group streaming feature
selection algorithm on several synthetic datasets and real-world
datasets. We compare OGSFS-FI with eight streaming feature
selection methods, including: Grafting [20], Alpha-investing [15],
OSFS and Fast-OSFS [5], SAOLA and Group-SAOLA [9], OS-NRRSAR-
SA [21] and OGFS [8]. The significance level α is set to 0.01 for
OSFS, SAOLA, and Group-SAOLA. For Alpha-investing, the param-
eters are set to the values used in [15]. For OGFS, the parameters
of ε and γ are set to 0.001 and 0.45 as the values used in [8]. All
algorithms mentioned above are implemented in MATLAB [32],
where OS-NRRSARA-SA is implemented by ourselves.

We use three basic classifiers, KNN(k=3), SVM, and CART in
Matlab R2015b, to evaluate a selected feature subset in our ex-
periments. We perform 5-fold cross-validation on each dataset.
Feature selection is training on 4/5 data samples and testing
on the rest 1/5 data. All competing algorithms use the same
training and testing data for each fold. All experimental results
are conducted on a PC with AMD(R) 3700X, 3.6 GHz CPU, and 32
GB memory.

To validate whether OGSFS-FI and its rivals have a significant
difference in prediction accuracy, we conduct the Friedman test
at a 95% significance level [33], under the null-hypothesis. If the
null-hypothesis at the Friedman test is rejected, we proceed with
the Nemenyi test [33] as a post-hoc test. Besides, the win/tie/loss
(W/T/L for short) counts are summarized for the experiment
results.

5.2. Experimental on synthetic data sets

To demonstrate the features selected by our new method
are interactive with each other, we apply OGSFS-FI on six syn-
thetic datasets with all the irrelevant, redundant, and interactive

features known in advance.
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Table 2
Synthetic datasets.
Data set Instances Features Target concept c

Data1 100 10 c = (a2 ∧ a7) ∨ (a1 ∧ a6)
Data2 100 10 c = a6 ∨ (a2 ∧ a7 ∧ a9)
Data3 100 5 c = (a1 ∧ a3 ∧ a5) ∨ (a2 ∧ a3) ∨ a3;
MONK1 432 6 c = (a1 = a2) ∨ (a5 = 1)
MONK2 432 6 c =two of {a1 = 1, a2 = 1, . . . , a6 = 1}
MONK3 432 6 c = (a5 = 3 ∧ a4 = 1) ∨ (a5 ̸= 4 ∧ a2 ̸= 3)
Table 3
Features selected on the six synthetic datasets.

Methods Data1 Data2 Data3 Monk1 Monk2 Monk3

OGSFS-FI {a2, a7} {a2, a6, a7} {a2, a3} {a1, a2, a5} {a1 ∼ a6} {a2, a4, a5}
Grafting {a1 ∼ a10} {a1 ∼ a10} {a1 ∼ a5} {a1 ∼ a6} {a1 ∼ a6} {a1 ∼ a6}
Investing {a1, a3, a4, a6, a7} {a1 ∼ a7, a10} {a1, a2, a3} {a1 ∼ a6} {a1, a2, a3} {a1, a2, a5}
OSFS {a2, a7} {a2, a6} {a1, a3} {a5} {} {a2, a5}
Fast-OSFS {a2, a7} {a2, a6} {a1, a3} {a5} {} {a2, a5}
SAOLA {a1, a2, a5, a6, a7} {a2, a6} {a1, a2, a3} {a2, a5} {a4, a5, a6} {a2, a4, a5, a6}
OS-SA {a1, a2, a6, a7, a9} {a2, a6, a7, a9, a10} {a1 ∼ a5} {a1, a2, a5, a6} {a1 ∼ a6} {a2, a4, a5, a6}
T
R

F

5.2.1. Synthetic data sets
The first three datasets, Data1, Data2, and Data3, are generated

y the data generation tool RDG1 of the data mining toolkit
EKA. The other three datasets about MONKs problems are avail-

ble from the UCI Machine Learning Repository. The six datasets
re described as follows:
For each dataset, the features appearing in the target concept’s

efinition are all relevant, while the absent features are either
edundant or irrelevant. The conjunctive terms in the definition
f the target concept imply interactive features. For example, in
ataset Data1, there are ten features a1, . . . , a10 and c = (a2 ∧
7) ∨ (a1 ∧ a6). This means a2, a7, a1, a6 are relevant features,
nd the others are redundant or irrelevant features. Meanwhile,
a2, a7} and {a1, a6} are both interactive features. Besides, for
ONK3, 5% class noise was added to the training set.

.2.2. Results on the synthetic data sets
We apply OGSFS-FI and other six streaming feature selection

ethods, including Grafting [20], Alpha-investing [15], OSFS [5],
ast-OSFS [5], SAOLA [9] and OS-NRRSAR-SA [21] on these six
ynthetic datasets. All these competing algorithms do not con-
ider the feature interaction during feature selection. For datasets
ONK1, MONK2, and MONK3, we use 1/2 samples for training
nd the rest for testing. The results of selected features for each
lgorithm can be seen in Table 3.
From Tables 2 and 3, we observe that OGSFS-FI can select the

nteractive features from datasets, while SAOLA, Grafting, Alpha-
nvesting, and OS-NRRSAR-SA select more features compared to
ur new method. This indicates that they cannot discriminate
rrelevant and redundant features well. Meanwhile, OSFS and
ast-OSFS select fewer features that indicate they cannot select
nteractive features from datasets.

.3. Experiments on real world data sets

In this subsection, we will apply our new method on ten real-
orld datasets, including five DNA microarray datasets
PROSTATE, LEUKEMIA, COLON, DLBCL, BREAST), three NIPS 2003
atasets (MADELON, ARCENE, GISETTE,) and two WCCI 2006 Per-
ormance Prediction Challenge datasets (GINA, HIVA), as shown in
able 4. For continuous value datasets, the values of each feature
re discretized into ten equal intervals.
7

able 4
eal-world datasets.
Index Data set Instances Features

1 PROSTATE 102 6033
2 LEUKEMIA 72 7129
3 COLON 62 2000
4 DLBCL 77 7129
5 MADELON 2600 500
6 ARCENE 200 10000
7 GISETTE 7000 5000
8 BREAST 97 24481
9 SRBCT 63 2308
10 HIVA 4229 1617

5.3.1. Analysis of parameter alpha and group sizes
There are two parameters: α and λ, in the inter-group se-

lection component of OGSFS-FI. In this section, we test different
values of α and analyze the influence of it in our new method.
or λ, we determine the value of it by cross-validation with the

minimum MSE (Mean Square Error). We choose the values of α

from 0.1 to 0.9 with 0.1 intervals.
Meanwhile, for the datasets mentioned above do not have

known group structures, we try to apply our new method on
these datasets with different group sizes and analyze the influ-
ence of group size in our new method. We choose the group sizes
of 50, 100, 200, 400, and 800.

Due to space constraints, we use three datasets: Colon, Arcene,
and Gisette to test the performance of different values of α

and group sizes. The experimental results of predictive accuracy,
running time and the mean number of selected features can be
seen from Fig. 2 to Fig. 4.

From Figs. 2–4, we can observe that:

• For a specific value of group size, the predictive accuracy
highly depends on α for datasets Colon and Arcene. Mean-
while, on dataset Gisette, all different values of α almost
get the same performance. According to Fig. 4, the alpha
values seriously affect the final number of selected features
for datasets Colon and Arcene, while having a minor impact
for Gisette. The fundamental reason for this phenomenon
is the relationship between the features in each dataset. In
other words, there is nearly no group effecting on dataset
Gisette, no matter what the group sizes we specified.
• For a specific value of α, the performance of different values

of group sizes varies greatly. For dataset Colon, a small group
size performances better than others. For dataset Arcene,
big group size performances better than others. Except for
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Fig. 2. Predictive accuracy varying with different values of α and group sizes.
Fig. 3. Running time varying with different values of α and group sizes.
Fig. 4. Mean number of selected features varying with different values of α and group sizes.
those no group effecting datasets, such as Gistette, the final
performance of our new algorithm determined by both the
values of α and group size. Smaller group sizes prefer to
select more features during intra-group selection, then for
inter-group selection, a bigger value of α performs better.
On the other side, bigger group sizes prefer to select fewer
features during intra-group selection, while a smaller value
of α tends to perform better in inter-group selection. Thus,
for predictive accuracy, the selection of these two parameter
values is related. A smaller group size indicates more con-
sideration of feature interaction within feature groups, while
a smaller value of alpha means more feature interaction
between feature groups.
8

• On running time, the performance between all these differ-
ent values of α is exceedingly small. Meanwhile, the running
time increases as the group size decreases. Smaller group
sizes will lead to more calls of the intra-group selection and
inter-group selection. Thus, it will spend more running time
in total with a small group size.
• Besides, on the mean number of selected features, smaller α

and group sizes select more features than others on average.
The main reason is the symmetrical uncertainty criteria we
used for stopping the selection in our method. When the
group size is smaller, it tends to select more features to
satisfy each group’s symmetrical uncertainty constraint and
consume more time.
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Table 5
The KNN predictive accuracy of OGSFS-FI VS. competing algorithms.
Dataset OGSFS-FI Alpha-investing OSFS SAOLA OGFS Group-SAOLA

PROSTATE 0.876 0.796 0.616 0.812 0.492 0.81
LEUKEMIA 0.8686 0.7771 0.6486 0.84 0.62 0.8029
COLON 0.82 0.7067 0.5767 0.6333 0.5867 0.6367
DLBCL 0.912 0.8187 0.7547 0.7707 0.3253 0.7733
MADELON 0.5958 0.5437 0.5526 0.5247 0.4978 0.5247
ARCENE 0.7075 0.7 0.565 0.595 0.52 0.575
GISETTE 0.9327 0.9635 0.5939 0.89 0.4978 0.8903
BREAST 0.6263 0.6105 0.5421 0.5421 0.5 0.5421
SRBCT 0.8159 0.694 0 0.6411 0.3799 0.6103
HIVA 0.9664 0.9645 0.9648 0.9671 0.9646 0.9671
W/T/L 8/0/2 1/0/9 0/0/10 1/0/9 0/0/10 1/0/9
AVG. 0.8121 0.7574 0.5814 0.7216 0.5384 0.7132
AVG. RANKS 1.3 2.8 4.7 3.2 5.7 3.3
Table 6
The SVM predictive accuracy of OGSFS-FI VS. competing algorithms.
Dataset OGSFS-FI Alpha-investing OSFS SAOLA OGFS Group-SAOLA

PROSTATE 0.884 0.848 0.646 0.876 0.582 0.866
LEUKEMIA 0.9057 0.7371 0.68 0.8314 0.6571 0.7943
COLON 0.82 0.7167 0.5967 0.6633 0.6333 0.66
DLBCL 0.9147 0.7813 0.768 0.8187 0.7547 0.8213
MADELON 0.5715 0.5872 0.5982 0.5883 0.4845 0.5883
ARCENE 0.6525 0.7425 0.5425 0.6275 0.56 0.6
GISETTE 0.9348 0.97 0.6064 0.8953 0.4884 0.8905
BREAST 0.6105 0.6053 0.4789 0.5895 0.5579 0.5895
SRBCT 0.8364 0.7242 0 0.635 0.3494 0.6042
HIVA 0.9651 0.9411 0.9643 0.9663 0.9648 0.9663
W/T/L 6/0/4 2/0/8 1/0/9 1/0/9 0/0/10 1/0/9
AVG. 0.8095 0.7653 0.5881 0.7491 0.6032 0.7380
AVG. RANKS 1.8 3.0 5.0 2.65 5.4 3.15
Table 7
The CART predictive accuracy of OGSFS-FI VS. competing algorithms.
Dataset OGSFS-FI Alpha-investing OSFS SAOLA OGFS Group-SAOLA

PROSTATE 0.838 0.806 0.626 0.826 0.602 0.796
LEUKEMIA 0.8886 0.7057 0.5914 0.8086 0.56 0.7829
COLON 0.7567 0.64 0.57 0.6133 0.6033 0.63
DLBCL 0.872 0.7947 0.7093 0.792 0.7547 0.7787
MADELON 0.5887 0.7174 0.5418 0.6122 0.5054 0.6122
ARCENE 0.665 0.6625 0.58 0.6525 0.59 0.605
GISETTE 0.9181 0.9441 0.5943 0.8963 0.4886 0.8964
BREAST 0.6105 0.5211 0.5579 0.5842 0.5737 0.5842
SRBCT 0.7944 0.6727 0 0.621 0.367 0.581
HIVA 0.9652 0.9547 0.9643 0.9677 0.9648 0.9679
W/T/L 7/0/3 2/0/8 0/0/10 0/0/10 0/0/10 1/0/9
AVG. 0.7897 0.7418 0.5735 0.7373 0.6009 0.7234
AVG. RANKS 1.6 2.9 5.4 2.8 5.2 3.1
Table 8
The running time(s) of OGSFS-FI VS. competing algorithms.
Dataset OGSFS-FI Alpha-investing OSFS SAOLA OGFS Group-SAOLA

PROSTATE 1.0929 0.6869 4.6988 0.227 0.0005 0.4212
LEUKEMIA 0.8375 1.0327 5.5542 0.2564 0.0001 0.5035
COLON 0.361 0.0611 1.4779 0.0662 0.0001 0.1409
DLBCL 1.0134 0.6746 4.7218 0.2224 0.0001 0.4384
MADELON 2.3293 0.4316 0.4624 0.0242 0.0002 0.0239
ARCENE 16.9252 1.2248 8.8917 0.4337 0.0001 0.6618
GISETTE 190.8926 218.3727 93.9858 2.0754 0.0004 2.3962
BREAST 3.8581 3.8069 17.2513 0.9009 0.0002 1.7095
SRBCT 1.1172 0.0741 1.8685 0.0791 0.0001 0.1644
HIVA 2.321 27.6255 1.8818 0.2637 0.0002 0.3183

AVG. 22.0748 25.3990 14.0794 0.4549 0.0002 3.4811
AVG. RANKS 4.5 3.7 5.0 2.2 1.0 4.6
g

In general, for some datasets that have very weak group ef-
ecting, all different values of α almost get the same performance
o matter what the group sizes we specified. For other datasets,
he selection of these two parameter values is related and varies
 r

9

greatly. On running time and number of selected features, the val-
ues of group sizes have a more significant effect than α. Smaller
roup sizes tend to select more features and consume more
unning time.
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Table 9
The mean number of selected feature of OGSFS-FI VS. competing algorithms.
Dataset OGSFS-FI Alpha-investing OSFS SAOLA OGFS Group-SAOLA

PROSTATE 16.28 19.2 1 7.24 1 5.6
LEUKEMIA 12.44 20.12 1 1.44 1 1.04
COLON 5.32 5.96 1 1.28 1 1
DLBCL 15.8 16.56 1 9.4 1 5.2
MADELON 3.56 57.36 1.88 1 1 1
ARCENE 6.5 15.1 1 16.2 1 9
GISETTE 92.24 416.84 2 19.52 1 16.2
BREAST 14.8 11.9 1 1 1 1
SRBCT 17.6 7.84 0 1.92 1 1.8
HIVA 17.28 295 1 6.68 1 4.4

AVG. 20.1 86.5 1.0 6.5 1 4.6
AVG. RANKS 5.0 5.7 1.9 3.85 1.7 2.85
i
i
F

D
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5.3.2. OGSFS-FI vs. Other streaming feature selection methods
We compare our algorithm with three state-of-the-art indi-

idual streaming feature selection methods (Alpha-investing [15],
SFS [5], and SAOLA [9]) and two group streaming feature se-
ection algorithms (Group-SAOLA [9] and OGFS [8]). For OGFS
nd Group-SAOLA, we set the group size(G=100) as the same as
GSFS-FI .
Tables 5–9 summarize the predictive accuracy, running time

nd mean number of selected features of GSFS-FI against the
ther five algorithms. We report the best performance for each
ataset. The p-values of Friedman test on KNN, SVM, CART,
unning time and the mean number of selected features are
.4478e−10, 3.3444e−07, 5.5492e−09, 2.8285e−11, and 1.8496
−13 respectively. Thus, there is a significant difference among
hese competing algorithms on predictive accuracy, running time
nd number of selected features respectively. According to the
emenyi test, the value of CD (critical difference) is 2.3841.
From Table 5 to Table 9 , we have the following observations.

• OGSFS-FI vs. Alpha-investing. According to the average ranks
and the value of critical difference, there is no significant
difference between OGSFS-FI and Alpha-investing on pre-
dictive accuracy in KNN, SVM, and CART cases. However,
OGSFS-FI performs better than Alpha-investing with KNN,
SVM, and CART on average. Alpha-investing spends more
running time on average than OGSFS-FI. Meanwhile, Alpha-
investing selects many more features than our new algo-
rithm. In general, compared with Alpha-investing, OGSFS-FI
can select fewer features but performs better.
• OGSFS-FI vs. OSFS. There is a significant difference between

OGSFS-FI and OSFS on predictive accuracy in KNN, SVM,
and CART cases. Thus, OGSFS-FI performs significantly better
than OSFS on predictive accuracy. OGSFS-FI is competing
with OSFS on running time and selects much more features
than OSFS. OSFS considers features individually and only
selects one or two features on some datasets, which leads
to the loss of much important information.
• OGSFS-FI vs. SAOLA. There is no significant difference be-

tween OGSFS-FI and SAOLA on predictive accuracy. How-
ever, OGSFS-FI outperforms SAOLA on average in cases of
these three classifiers. SAOLA is faster than OGSFS-FI and
selects fewer features. Similar to OGSFS-FI, SAOLA also uses
Mutual Information for feature selection but does not con-
sider the interaction between features. Thus, OGSFS-FI se-
lects more features than SAOLA and performs better.
• OGSFS-FI vs. OGFS. There is a significant difference between

OGSFS-FI and OGFS on predictive accuracy. OGFS is an online
streaming group feature selection method that considers
the underlying structure of the feature stream. However,
OGFS only selects one or two features on these datasets and
performs worst among these comparing algorithms. There
are two probable reasons: 1) we do not find good parameter
 F

10
values for OGFS; 2) OGFS is proposed for image analysis and
maybe not fit these datasets.
• OGSFS-FI vs. Group-SAOLA. There is no significant difference

between OGSFS-FI and Group-SAOLA on predictive accuracy.
However, OGSFS-FI performs better than Group-SAOLA on
average. Group-SAOLA runs faster than OGSFS-FI and selects
fewer features. Group-SAOLA is an online streaming group
feature selection method and runs fast on extremely high
dimension datasets. However, Group-SAOLA does not con-
sider the feature interaction within streaming groups and
selects much fewer features on these datasets, which leads
to the loss of important information.

In sum, OGSFS-FI gets the highest average predictive accuracy
and lowest average ranks in KNN, SVM, and CART cases. With
the considering of feature interactions, OGSFS-FI selects more
features and spends more running times. However, OGSFS-FI
performs best on average among these competing algorithms.

6. Conclusion

In this paper, considering the feature interaction within and
without streaming group features, we proposed a new online
group streaming feature selection method to handle it, name
OGSFS-FI. OGSFS-FI can be divided into two parts: online intra-
group selection and online inter-group selection. For online intra-
group selection, we designed a new approach that selects pairs
of interactive features in multi-information theory. Meanwhile,
we demonstrated that features in such a selected subset are
relevant to the class and interact with each other. For inter-group
selection, we used the elastic net that prefers to select a group
of features. Experiments conducted on six synthetic datasets and
ten real-world datasets indicated the effectiveness of our new
method. In future work, we will deeply analyze the foundations of
feature interaction and why it can improve prediction accuracy.
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