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Abstract— Streaming data mining can be applied in many
practical applications, such as social media, market analysis, and
sensor networks. Most previous efforts assume that all training
instances except for the novel class have been completely labeled
for novel class detection in streaming data. However, a more
realistic situation is that only a few instances in the data stream
are labeled. In addition, most existing algorithms are potentially
dependent on the strong cohesion between known classes or the
greater separation between novel class and known classes in the
feature space. Unfortunately, this potential dependence is usually
not an inherent characteristic of streaming data. Therefore,
to classify data streams and detect novel classes, the proposed
algorithm should satisfy: 1) it can handle any degree of separation
between novel class and known classes (both easy and difficult
novel class detection) and 2) it can use limited labeled instances to
build algorithm models. In this article, we tackle these issues by
a new framework called semisupervised streaming learning for
difficult novel class detection (SSLDN), which consists of three
major components: an effective novel class detector based on
random trees, a classifier by using the information of nearest
neighbors, and an efficient updating process. Empirical studies
on several datasets validate that SSLDN can accurately handle
different degrees of separation between the novel and known
classes in semisupervised streaming data.

Index Terms— Data stream, novel class detection, semisuper-
vised learning (SSL), streaming classification.

I. INTRODUCTION

MANY advanced traditional machine learning meth-
ods are proposed based on the assumption that the

learning environment is static. However, data are often
dynamic in practical applications, such as traffic control, social
media, weblogs, market analysis, and sensor networks [1].
Large amounts of instances are continuously generated and
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Fig. 1. Illustrative examples of detecting new emerging classes in (a) data
stream A and (b) data stream B using images in the Fashion-MNIST
dataset. In stream A, detecting the emerging novel class of “Sandal” is easy
because the feature characteristics of the novel class and known classes are
significantly different. In stream B, detecting the novel class of “Shirt” is
more difficult because “Shirt” may look very similar to those of “Pullover”
or “Coat.”

exist in the form of data streams. In the past ten years,
to extract relevant information or patterns from these stream
data, data stream mining has attracted extensive research
attention [2], [3].

In many real-world data stream applications, the concept of
underlying problems can evolve [4]. For example, in social
media, such as Twitter, Facebook, and Weibo, new hot topics
often appear [5], [6]. In other words, new patterns (classes)
can emerge during the streaming data. Therefore, novel class
detection in streaming data refers to learning algorithms that
can detect and learn novel classes [3]. Most of these algorithms
work in a supervised setting, assuming that all the training data
are labeled except for the novel class [7], [8], [9]. However,
a more realistic situation is that only a few instances in the data
stream are labeled and the stream data are semisupervised [10].
Due to practical constraints, such as time and resource cost,
it is impossible to require the actual labels of all instances in
the data stream. Therefore, only a small amount of data are
labeled in practice, and the rests are unlabeled. Semisupervised
data stream learning was proposed to deal with this new
but realistic issue and has gained growing attention in recent
years [11], [12], [13].

Besides, most of the existing data stream novel class detec-
tion methods usually have an implicit assumption: the novel
class is far away from the known class in the feature geometric
space or the density distribution of the known classes is
relatively concentrated [4], [5], [6], [11], [12], [13]. In other
words, their novel class detection mechanism relies on strong
cohesion (i.e., small intraclass distance) or significant data
separation (i.e., large interclass distance) of the instances in the
observation feature space. However, in a real-world streaming
data environment, data distribution is often not as ideal as
assumed. For example, Fig. 1 gives a cloth identification
example of two streams. In stream A, the known classes
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Fig. 2. Key steps of our proposed framework. First, we use the initial
semisupervised training data to construct the detector SSLDN-Forest and the
classifier SSLDN-LL. During the streaming data, for a new arrival instance xt ,
if xt is labeled, it will be used to update the classifier SSLDN-LL; otherwise,
the detector SSLDN-Forest determines whether xt is a novel class or not. If xt
is a novel class, we put it in the novel class buffer B . If xt is a known class,
we use SSLDN-LL to classify it. When the buffer B is complete, we update
SSLDN-Forest and SSLDN-LL with the cached instances in B .

are “Trouser” and “Pullover,” detecting the emerging novel
class of “Sandal” is easy because the feature characteristics of
the novel class and known classes are significantly different.
By contrast, if the known classes are “Pullover” and “Coat”
in stream B, the novel class is “Shirt,” where “Shirt” may
look very similar to those of “Pullover” or “Coat,” and this
novel class is more challenging to detect. Thus, when the novel
class and known classes are closer to each other in the feature
geometric space, it is more difficult to detect the novel class
in this case.

As far as we know, very few works focus on the issue of
difficult novel class detection in semisupervised stream data.
Specifically, Cai et al. [14] used the labeled training set to build
a model based on the nearest neighbor ensembles method and
then used the novel class score and the known class score
to predict the data stream. However, the algorithm has the
following limitations: 1) the initial training instances should
be all labeled, but in actual application scenarios, labeling the
whole initial training set is unrealistic, and the more common
case is only a few labeled instances; 2) the judgment threshold
is fixed, which limits the performance on different datasets;
and 3) for each test stream instance, the algorithm must find
the center of the smallest hypersphere that covers it, which
is expensive to run. Therefore, this article aims to handle
the issue of difficult novel class detection in semisupervised
streaming data with more efficient and scalable methods.

Fig. 2 shows our proposed novel semisupervised stream-
ing learning for difficult novel class detection, named

SSLDN. The proposed framework mainly consists of three
components.

1) Novel Class Detector SSLDN-Forest: It determines
whether a new arriving stream instance is a novel class
or not by the voting mechanism of SSLDN-Trees, where
each SSLDN-Tree uses the path length to judge whether
the new stream point is a novel class. item Known
Class Classifier SSLDN-LL: It classifies new unlabeled
known class instances according to the decision function
obtained with a fixed number of labeled instances.

2) Updater SSLDN-U: The current models (SSLDN-Forest
and SSLDN-LL) are updated using instances in the
buffer B when B is full.

Our main contributions are concluded as follows.
1) We give a formal definition of semisupervised classifica-

tion for the emerging novel class (SSENC) and analyze
the difficulties and challenges of the difficult novel class
detection problem in SSENC.

2) We propose the efficiency framework SSLDN
to handle the difficult novel class problem in
SSENC that consists of three main components:
detector SSLDN-Forest, classifier SSLDN-LL, and
updater SSLDN-U. SSLDN-Forest comprises several
SSLDN-Trees that guarantee accurate judgment of the
new stream instance and can automatically update the
judgment threshold. In terms of the principle of nearest
neighbors, SSLDN-LL can classify unlabeled known
class instances by the decision function obtained from
the similarity matrix and indicator vector matrix of
a small number of labeled instances. SSLDN-U can
update the detector and classifier effectively with the
instances in the buffer. Based on these, SSLDN can
effectively detect difficult novel classes and classify
known class instances in semisupervised streaming
data.

3) Comprehensive experiments on eight benchmark and
real-world datasets, and comparisons with five state-of-
the-art algorithms verify the effectiveness and efficiency
of our proposed method.

Compared with the work proposed in [14], our new method
has the following advantages: 1) SSLDN only needs a
few labeled instances when constructing the initial training
model; 2) SSLDN determines the threshold automatically; and
3) based on the saved information of center and radius formed
by tree nodes, SSLDN is efficient by using very few labeled
instances. Besides, in this article, we only focus on the issue
of detecting the novel class in streaming data, also called
concept evolution [15]. We did not consider the concept drift
and drifted data in our framework. Specifically, concept drift
occurs in the stream when the underlying concepts of the
stream change over time, while concept evolution occurs as
a result of novel classes evolving in the stream [16].

This remaining article is organized as follows. Section II
provides a brief literature review of existing approaches.
Section III introduces the problem formulation. The complete
detail of the proposed framework is presented in Section IV.
Section V describes experimental settings and results. Finally,
Section VI concludes this article.
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II. RELATED WORK

With the latest technological advances in processing power
and communication tools, many real-world applications and
hardware devices (such as sensors) generate large amounts of
data in data streams every day. The streaming classification
for the emerging novel class (SENC) is a vital issue in a data
stream, where the learning process strengthens the previously
trained classifier to deal with emerging new classes, causing
extensive attention from the machine learning and data mining
communities [16], [17]. The handling of the SENC problem is
of great significance and has achieved great success in many
real-world applications, such as spam detection, user behavior
analysis, Web applications, monitoring patient health, fraud
detection, and intrusion detection [18], [19], [20].

A. SENC Problem

Learning from streaming data has become a hot topic,
and the SENC problem has attracted the attention of many
scholars. Din et al. [21] provided a comprehensive overview
of the existing works and discussed and analyzed various
aspects of the proposed algorithms for data stream clas-
sification with concept evolution detection and adaptation.
Specifically, ECSMiner proposed by Masud et al. [16] indi-
cated that by introducing a time limit for delayed classifi-
cation, the method could automatically detect novel classes
even if the classification model is not trained with novel
class instances. ECSMiner assumed that true labels of new
emerging classes could be obtained after some time delay.
Wang et al. [5] proposed a convolutional neural network
(CNN)-based prototype ensemble (CPE) framework with a
smart incremental learning strategy during stream classifi-
cation and novel class detection for high-dimensional data
streams. However, CPE has a deep neural network and update
mechanism that consumes tremendous online computation
during calculation. To handle the two main challenges in class-
incremental learning: how to conduct novelty detection and
how to update the model with a few novel class instances,
Zhou et al. [22] proposed a novel framework (LC-INC) to
handle the incremental new class, which can dynamically
combine the prediction information with structure information
to detect novel class instances efficiently. To handle the three
problems of existing SENC approaches: high false positive
for the new class, long prediction time, and true labels for all
instances, Zhang et al. [23] proposed the k-Nearest Neighbor
ENSemble (KNNENS)-based method to detect the new class,
maintained high classification performance for known classes,
and did not require true labels of new class instances for the
model update. Mu et al. [4] proposed the SENC-MaS that
used two low-dimensional matrix sketches for detecting new
classes and classifying known classes. These two sketches are
continuously updated in the stream. The premise of defining
matrix sketches is that the known class feature information can
be well represented, while matrix sketches will not represent
the feature structure of the new class. Thus, SENC-MaS is
based on the assumption that the data of any new class are
far away from the data of other known classes in the feature
space. Mu et al. [17] introduced an alternative technique as

a solution to the problem of classifying new classes of data
streams. The completely random trees are used as a single
common core to solve all three subproblems: model updates,
supervised learning, and unsupervised learning. The limitation
of this method is that it does not give true class labels. To solve
concept drift and temporal dependency problems at the same
time, Song et al. [24] proposed the local drift degree that was
used as a drift adaptation technique in a novel drift adaptation
regression framework to discard outdated instances in a timely
way, thereby guaranteeing that the most relevant instances will
be selected during the training process.

Besides, some works only focus on detecting and identifying
data that have never been seen before through the training
process, such as novel class detection [25], [26], [27] and
outlier detection [28], [29], [30]. These works only study
subproblems of our setting and ignore the problem of clas-
sification and model update. Therefore, the usage of these
methods in streaming data is limited, and the way to solve the
whole SENC problem should combine with some classification
frameworks.

B. Semisupervised Learning
Semisupervised learning (SSL) aims to use unlabeled data

for training, typically, a small set of labeled data together
with an extensive collection of unlabeled data. In reality,
semisupervised streaming data are a more common situation.

Specifically, Haque et al. [10] proposed a semisupervised
framework (SAND) that used change detection on classifier
confidence to detect concept drifts and to determine chunk
boundaries dynamically. SAND intelligently selects a few
instances using the estimated classifier confidence scores.
However, this kind of active selection is not natural in general
semisupervised settings [31]. Yang et al. [32] proposed a
semisupervised class-incremental learning without forgetting
(CILF) method, which aims to learn adaptive embedding
for processing novel class detection and model update in a
unified framework. Zheng et al. [33] proposed a semisuper-
vised framework (ESCR) to detect recurring concept drift and
concept evolution in data streams with partially labeled data.
ESCR used the Jensen–Shannon divergence-based change
detection technique on classifier confidence score instead
of classification error rate to detect recurring concept drift.
However, ESCR uses too many parameters that are difficult to
tune. Since labeling all instances in a potentially lifelong data
stream is frequently prohibitively expensive, Soares et al. [34]
proposed a novel algorithm to exploit unlabeled instances,
and the algorithm was an online semisupervised radial basis
function neural network (OSNN) with manifold-based training
to exploit unlabeled data while tackling concept drifts in
classification problems. Zhang et al. [13] proposed an adaptive
matrix sketching and clustering method, which cohesively and
adaptively classifies known classes, identifies multiple novel
classes, and updates the learning model. Any instances far
away from these frequent directions are considered to be from
the novel class. However, this approach relies on the strong
intrinsic cohesion and separation assumption. Zhu et al. [12]
presented a semisupervised learning framework (SEEN) that is
capable of handling emerging new classes in a dynamic data

Authorized licensed use limited to: Anhui University. Downloaded on December 12,2023 at 07:21:53 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: DIFFICULT NOVEL CLASS DETECTION IN SEMISUPERVISED STREAMING DATA 6875

stream where a few labeled instances are collected together
with a large number of unlabeled instances. However, SEEN
forest construction uses half of the original features, which
may reduce the feature information expression of the data.
Din et al. [11] proposed a new online SSL algorithm by
modeling concept drifts with a set of microclusters. These
microclusters are dynamically maintained to capture the evolv-
ing concepts with error-based representative learning. Never-
theless, the kept microclusters could not capture the hidden
local cluster structure for incoming data with non-Gaussian
distributions, and they tend to fail with high-dimensional data.

All these methods mentioned above have an implicit
assumption that: the novel class and the known class are far
apart in the feature geometric space or the density distribution
of the known class is relatively concentrated. This assumption
is helpful to detect instances of novel classes in the stream, but
it may not be an intrinsic property of stream data in reality.
In actual application scenarios, low separations between novel
classes and known classes or high cohesion between known
classes are very common, and it is usually challenging to
detect a novel class in these cases. Unfortunately, there are
very few works that focus on this issue. Cai et al. [14]
provided a solution to this issue, which detects the novel
class and classifies known classes according to the new-class
score and known-class score. However, as mentioned above,
this method has some limitations that cannot be ignored.
Therefore, this article aims to propose a novel semisupervised
streaming learning framework that can detect difficult novel
classes accurately and classify known classes effectively.

III. PROBLEM FORMULATION

In the issue of dynamic SSL, instances continue to emerge
from the data stream. We use the semisupervised stream-
ing classification for the emerging new class to represent
the SENC problem in semisupervised stream data. This
section first gives the formal definition and challengings of
SSENC. Then, we present the separation indicator α, which
measures the difficulty of detecting novel classes. Finally,
we analyze the problem of difficult novel class detection in
SSENC.

A. Semisupervised Streaming Classification for
Emerging New Class

Definition 1 (SSENC): Suppose that S = {(xt , yt)}t=T0
t=0 rep-

resents the data streams from timestamp 0 to the initial
timestamp T0, where xt ∈ R

d is the training instance at
timestamp t . Y = {1, 2, . . . , k} is the label set of known
classes, where k is the number of known classes so far. For
semisupervised data, there are two states of yt : yt ∈ {0,¬0}.
For the instance xt in the data stream at timestamp t , if yt = 0,
then xt is unlabeled data; if yt ∈ Y , then xt is labeled
data. Until timestamp T0, all arrived instances in S are used
to initialize the detector and classifier. With the increase of
time, data stream evolution arises. S� = {(x �t , y �t )}∞t=T0+1 and
Y � = {Y, n1, n2, . . .}, where n j is the label given for an
emerging novel class. If y �t = 0, x �t is unlabeled. SSENC aims
to learn a model f (initialized with S) such that f (x �t)→ Y �

is “as good as possible.” Specifically, for each (x �t , y �t = 0) in
the semisupervised data stream, f will determine whether it
is a novel class or belongs to an existing class.

Most existing methods for the SENC problem are based on
an implicit premise that the initial model should be established
on enough labeled instances. However, the actual situation is
not the case, and we are more likely to retain a small number
of labeled instances within a large number of unlabeled
data. Therefore, solving the SENC problem in semisupervised
streaming data seems to more align with actual needs. The
challenges of the SSENC problem include: 1) how to use
semisupervised data to build the initial model; 2) how to make
better use of a large amount of unlabeled data compared with
a small amount of labeled data; and 3) how to achieve an
efficient update process, and the model should also meet the
requirements of high-precision detection and classification.

B. Separation Indicator
Separation indicator α was first defined in [14] which

reflects the separation between known classes and a novel
class. For an instance x , ηx represents its nearest neighbor
belongs to the same class, and let τ (x) denote their distance,
expressed as: τ (x) = �x−ηx�. The definition of α is described
as follows:

α(KD, ND) = M(KD, ND)

C(KD)
(1)

where KD and ND represent the known class instances set
and novel class instances set, respectively. M(KD, ND) =
minx∈KD ,x�∈ND �x − x �� represents the smallest distance
between the known classes and novel class. C(KD) =
(1/|KD|)�x∈KD

τ (x) represents the compactness of the
known classes. When M(KD, ND) is small, the separation
between the new and the known classes is small. On the
contrary, if the value of C(KD) is large, the data in the feature
space of the known classes are weakly cohesive. Therefore, the
value of α can reflect the difficulty of detecting novel class.
Theoretically, the smaller the value of α, the more difficult for
the SENC problem.

C. Difficult Novel Class Detection in SSENC

Under the premise of different values of α, the degree of
difficulty in SSENC is different. In the semisupervised data
stream, both the feature structure of the new data and the
relationship with the feature space of the known data are
unknown. In actual situations, we cannot make assumptions
about the stream data in advance. Therefore, there are two
extreme cases in the feature space between the novel class
data and the known class data: high-α and low-α.

Specifically, when the distance between the novel class
and the known class is large in the feature geometric space
(e.g., M(KD, ND) is large) or the distribution of known
classes is denser (e.g., C(KD) is small), we call it the high-
α situation. It is effortless to detect the novel class because
the feature geometric distance differs between the novel class
and the known class. Nevertheless, this assumption is not an
immutable feature of the actual data stream. When the case
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is contrary to this assumption (e.g., M(KD, ND) is small or
C(KD) is large), we call this the low-α situation. In low-α,
the novel class instance looks very similar to the known class
instances, so this issue will be more challenging because it is
easy to classify such novel class stream data into one of the
known classes.

Note that α is an indicator to denote the level of difficulty
of the SSENC problem only, and it is not used in the proposed
algorithms.

IV. SSLDN FRAMEWORK

In this section, we proposed a new SSLDN, to solve
the SSENC problem with different levels of separation.
SSLDN consists of three main components: 1) an effective
novel class detector SSLDN-Forest; 2) an accurate classi-
fier SSLDN-LL; and 3) an efficient model update algorithm
SSLDN-U. A schematic of the overall procedure of our new
framework is given in Fig. 2.

Specifically, for the semisupervised data streams, if the
newly arrived instance xt is labeled, it will be used to update
the classifier SSLDN-LL. On the contrary, if the newly arrived
instance xt is unlabeled, it will be identified by the novel
class detector SSLDN-Forest built by initial training instances.
Then, there are two cases for xt : 1) xt is a novel class and
will be added into the temporary data buffer B and 2) xt is
not a novel class and will be classified by SSLDN-LL. When
the temporary data buffer B reaches the maximum buffer size,
an efficient model update algorithm SSLDN-U will be applied
on the classifier SSLDN-LL and the detector SSLDN-Forest.
The concrete details of our new framework are provided in
the following.

A. Novel Class Detection: SSLDN-Forest

SLDN-Forest aims to judge whether the new arriving stream
instance is a novel class or not in terms of the difference
between the new arriving instance and the characteristic of
all arrived samples. We use the distribution of feature spaces
and the data scale of different feature values to construct the
SSLDN-Forest.

Specifically, inspired by iForest [30], SSLDN-Forest is
composed of several SSLDN-Trees, and each SLDN-Tree is
constructed by selecting ϕ samples from the training set T
without replacements. iForest consists of itrees, where each
itree randomly selects an attribute and uses the dividing point
between the minimum and maximum values in its subsamples
to generate partitions. However, iForest cannot be automati-
cally updated for streaming data and is sensitive to the scale of
different feature values. Compared to iForest, SSLDN-Forest
uses the median as the segmentation that can reduce the impact
of the data scales of the sample feature value on the tree
segmentation. Meanwhile, because of the automatic update
function, SSLDN-Forest is suitable for stream data.

1) SSLDN-Forest: SLDN-Forest is composed of multiple
SSLDN-Tree, where each SSLDN-Tree is constructed by
randomly selecting ϕ samples from T . The main steps of
forming SSLDN-Forest are shown in Algorithm 1.

Algorithm 1 SSLDN-Forest
Input: T (training set), z (number of trees), ϕ (number of

samples for each tree)
Output: SSLDN-Forest
1: Initialize: SSLDN-Forest ← {};
2: for v = 1, . . . , z do
3: Xv ← Randomly select ϕ samples from T without

replacements;
4: Tree(v) ← SSLDN-Tree(Xv)
5: SSLDN-Forest ← SSLDN-Forest ∪ Tree(v)
6: end for
7: return SSLDN-Forest

Fig. 3. Main steps of constructing an SSLDN-Tree. Suppose that there
are 21 instances for an SSLDN-Tree, and we set the minimum number of
instances for the leaf node as 4. From (1) to (4), all these instances are
recursively divided into left subtree and right subtree. The final tree is shown
as (5) with height 2 and 4 leaf nodes.

2) SSLDN-Tree: Each SSLDN-Tree is constructed by ϕ
samples from the training set. We use Fig. 3 to describe
the main steps of constructing an SSLDN-Tree. Specifically,
we first randomly select an attribute a. Then, the attribute
values of a for all the samples are sorted to get S, and the
median s of S is obtained. Next, we divide the samples into
two parts according to s and calculate the center points lcenter
and rcenter for these two parts [Fig. 3(1)]. For each instance
x , if �x − lcenter� ≤ �x − rcenter�, then x is divided
into the left subtree XL; otherwise, divide x into the right
subtree XR. In this way, all the sample nodes are divided
into two parts, XL and XR, and the center point c and radius
r are obtained [Fig. 3(2)]. Then, repeating the process from
Fig. 3(1) to Fig. 3(2), XL and XR continue to split [Fig. 3(3)].
When the number of instances in the leaf node is less than
the minimum value, the current subtree stops dividing. The
specific construction process is shown in Algorithm 2.

Let A be the set of attributes, where X(a) is the attribute
value corresponding to attribute a in A. Step 2 calculates
the center c and radius r of the current node based on all
the attributes in A. Steps 3–13 are recursive processes that
divide the instances in X . Specifically, steps 3 and 4 determine
whether the number of instances in the current node is less
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Algorithm 2 SSLDN-Tree
Input: X (training intances), MinSi ze (minium number

instances for the leaf node).
Output: SSLDN-Tree
1: Let A be the set of attributes;
2: Calculate the center c = meanx∈X (x) and the radius r =

maxx∈X�x − c�;
3: if |X | ≤ MinSi ze then
4: return LeafNode{Center←c, Radius← r}
5: else
6: a← randomly select an attribute from A;
7: S← sor ted(X(a));

8: s ← S[ |X |2 ]+S[1+ |X |2 ]
2 ;

9: lcenter ← mean(X(a) ≤ s);
10: rcenter ← mean(X(a) > s);
11: X L ← {x ∈ X | �x − lcenter� ≤ �x − rcenter�};
12: X R← {x ∈ X | �x − lcenter� > �x − rcenter�};
13: return InNode{Center← c, Radius ← r,

SplitValue ← s, SplitCenters← {lcenter, rcenter},
Left← SSLDN-Tree(X L), Right← SSLDN-Tree(X R)}

14: end if
15: return SSLDN-Tree.

than MinSize. If true, the current node is a leaf node, and we
terminate the division; otherwise, step 6 randomly selects an
attribute from A. Steps 7–10 sort the instances in X , calculate
the median, and get the centers of the left subtree and right
subtree. Steps 11–13 construct the left subtree (XL) and the
right subtree (XR). Let us use a simple example to illustrate
the concrete construction process of SSLDN-Tree.

Suppose that X =

⎡
⎢⎢⎣

9 2 6 8
3 4 4 7
4 8 7 6
2 5 3 1

⎤
⎥⎥⎦ ∈ R4×4 has four instances

{x1, x2, x3, x4} and four attributes {a1, a2, a3, a4}. The details
of splitting the instances into left and right subtrees of
SSLDN-Tree are given as follows.

First, randomly select one attribute from these four
attributes. Assume that the selected attribute is a2. Then,
we sort a2 = [2, 4, 8, 5] as S = [2, 4, 5, 8], and the median
s = (S[2] + S[3])/2 = (4+ 5)/2 = 4.5.

Second, calculate lcenter and rcenter. Specifically, for x1 =
[9, 2, 6, 8], the value of a2 is 2 < 4.5. For x2, x3, and x4,
the values of a2 are 4 < 4.5, 8 > 4.5, and 5 > 4.5,
respectively. Therefore, x1 and x2 are temporarily one group,
and x3 and x4 are temporarily another group. Then, lcenter =
mean(X (a) ≤ s) = mean(x1, x2) = [6, 3, 5, 7.5] and
rcenter = mean(X (a) > s) = mean(x3, x4) = [3, 6.5, 5, 3.5].

Third, divide the instances in X into XL or XR in terms of
the distances to lcenter and rcenter. Because �x1− lcenter� =√

11.25 < �x1 − rcenter� = √77.5, x1 is divided into the
left subtree XL. Similarly, we can get XL = {x1, x2} and
XR = {x3, x4}.

Fourth, calculate the center and radius of the nodes formed
by XL and XR. The center point formed by XL is c1 =
lecenter = [6, 3, 5, 7.5] and the radius is r1 = �x2 −

Fig. 4. Detection process of new arriving instance xt within the vth
SSLDN-Tree. We first judge whether xt is in the normal area of the root,
shown in (1). If xt is in the normal area, then we traverse xt down. When
xt is in the abnormal area of some node [shown as (2)] or in the leaf node,
we terminate the traversal and return the path length.

lcenter� = √11.25 = 3.3541. The center point formed by
XR is c2 = rcenter = [3, 6.5, 5, 3.5] and the radius is
r2 = �x4 − rcenter� = √13.5 = 3.6742.

Recursively split the left and right subtrees until the number
of instances in the leaf node is less than the minimum value.

SSLDN-Tree uses the median of the attribute value to divide
subsamples into two parts, gets the center points of two parts,
and then calculates the distance between each sample and the
two center points to determine whether this sample is divided
into left subtree or right subtree. SSLDN-Tree chooses the
median as the split point, which avoids different eigenvalue
scales on tree segmentation. We divide all the instances into
the left subtree or the right subtree according to the distance
between the instances and the two center points. This approach
ensures that the samples of the same node have similar
characteristic attributes, which is advantageous for judging
whether a new streaming instance is a novel class or not.

3) Detecting Process Using SSLDN-Forest: iForest [30]
believed that normal points need more divisions to be isolated,
while abnormal points need fewer divisions to be isolated.
An instance with a shorter path length is more anomalous
than an instance with a longer path length. For SSLDN-Forest,
we also use the path length to judge the new arriving streaming
instances.

After constructing each SSLDN-Tree, we calculate the path
length between each node to the root and then get the average
path length of each tree. We use formula (2) to express the
threshold of the vth SSLDN-Tree

treevavgpath =
1

m

m	
g=1

lg (2)

where m is the number of nodes in the v-th SSLDN-Tree and
lg is the length of the path from each node to the root.

Besides, during the building of SSLDN-Tree, we calculate
the center and radius of the samples in each node to represent
the regional range. The calculation of the center and radius is
shown in the following equation:

c = mean
x∈X

(x), r = max
x∈X
�x − c�. (3)

We use Fig. 4 to illustrate the detection process of the new
arriving instance (test point) xt . In Fig. 4(1), we first judge
whether xt is in the normal area at the root node. Specifically,
the distance between xt (red star) and the center point c is
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Algorithm 3 Detecting Process Using SSLDN-Forest
Input: SSLDN-Forest, z (number of SSLDN-Tree), xt (new

arriving instance)
Output: True or False.
1: num ← 0;
2: for SLDN-Tree(v = 1, . . . , z) do
3: c, r : the root node center and radius of SLDN-Tree(v)
4: if �xt − c� ≤ r then
5: xt continues to traverse down;
6: else
7: calculate the path length ζv(xt);
8: end if
9: if ζv(xt) < treevavgpath then

10: SSLDN-Tree(v) outputs True, num ← num + 1 ;
11: else
12: SSLDN-Tree(v) outputs False;
13: end if
14: end for
15: if num > � z

2� then
16: return True
17: else
18: return False
19: end if

compared with r to determine whether it is in the normal area
(�x − c� ≤ r ) or outside the normal area (�x − c� > r ). If xt

is in the normal area, we traverse xt down the tree. Suppose
that xt(a) > s, and then, xt traverses to the XR node. In XR,
if �x−c� > r , xt falls outside the XR node [Fig. 4(2)], and the
path length ζv(xt) of XR is obtained. After that, if ζv(xt) <
treevavgpath, xt is regarded as an instance of the novel class.
Then, the vth SSLDN-Tree outputs “True” and count num plus
one, where num is the number of SSLDN-Tree that outputs
“True.” Otherwise, xt belongs to the known class and the
vth SSLDN-Tree outputs “False.” The final result adopts the
majority voting mechanism, and SSLDN-Forest(xt) is deter-
mined by z SSLDN-Tree. If num > �z/2�, SSLDN-Forest
outputs “True,” and xt is assigned as a novel class instance;
otherwise, SSLDN-Forest outputs “False,” and xt is a known
class instance. Algorithm 3 describes the details of the testing
process by using SSLDN-Forest in the data stream.

If xt belongs to one of the known classes, we determine
the label of xt by the know class classifier SSLDN-LL in
Section IV-B; otherwise, if xt is a novel class instance, we add
xt into the buffer B , which stores the previously unseen class
instances. Once the buffer B is complete, we execute the model
updater SSLDN-U in Section IV-C, and the new model can be
ready for the subsequent test instances in the data stream.

B. Known Classes Classification: SSLDN-LL

If the new arriving instance is not a novel class, we use the
known classes classifier to classify it into one of the known
classes. To make accurate predictions on a large amount of
newly arrived unlabeled instances and a few labeled instances,
we propose the classifier SSLDN-LL that limits the number
of labeled instances.

Specifically, recent advances in multiview [35] and adap-
tive clustering [36] believe that the smaller the distance
between two data points should have a larger probability to be
neighbors, which can be used to learn the similarity matrix and
indicator matrix. SSLDN-LL establishes a similarity matrix
and an indicator matrix between labeled instances to classify
unlabeled data based on this assumption. For a newly arrived
instance xt , if xt is labeled, we use xt to update the SSLDN-LL
classifier. If xt is unlabeled, SSLDN-LL determines the label
of xt by the decision function composed of a similarity matrix
and an indicator matrix.

1) Classification Principle: Given a set of data points

{x1, x2, . . . . . . , xn}, x ∈ R
d , where l and u represent the num-

ber of labeled points and unlabeled points, Yl = [y1, . . . , yl]T ,
where yi ∈ R

c×1 represents the known class indicator vector
of the i th sample and c is the number of classes, and yi j =
1 means that the i th sample belongs to the j th class. We adopt
the data preprocessing proposed in [36] as

min
si∈n×1

n	
i, j

�xi − x j�2
2si j + α�S�2

F

s.t. ∀i , sT
i 1 = 1, 0 ≤ si j ≤ 1, rank(Ls) = n − c (4)

where S represents the similarity matrix formed between data
points and α is the regularization parameter. In [36], it assigns
adaptive neighbors to each sample, which means that the
similarity between data points will change. Thus, the similarity
matrix S will be modified until it contains exact c connected
components.

In the spectral analysis, L S = DS − ((ST + S)/2) is called
the Laplacian matrix, where the degree matrix DS in S ∈
R

n×n is the diagonal matrix whose i th diagonal element is�
i((si j + s ji)/2). According to the content of semisupervised

classification mentioned in [35], we use F = [ f1, f2, . . . , fn]
to represent the class indicator matrix, where fi is the class
indicator vector with labeled data, and then rearrange all the
points and make the first l points marked. We redivide Ls

and F into blocks, so they could be expressed as Ls =

Lll Llu

Lul Luu

�
and F = [Fl; Fu], where Fl = Yl .

Unlike the method [35] that works on multiview, our calcu-
lation of the following two distances is only from the perspec-
tive of a single view. Specifically, dx

i j = �xi − x j�2
2 means the

distance between xi and x j , and d f
i j = � fi− f j�2

2 represents the
distance between fi and f j . We denote di ∈ R

n×1 a vector with
the j th element as di j = dx

i j + λd f
i j . Thus, the regularization

parameter α is

α = 1

n

n	
i=1

⎛
⎝k

2
di,k+1 − 1

2

k	
j=1

di j

⎞
⎠ (5)

where k refers to the number of nearest neighbors.
When solving S and F with labeled data, problem (4) can

be transformed into the following formula:

min
S,F

n	
i, j

�xi − x j�2
2si j + α�S�2

F + 2λTr (F
T Ls F)

s.t. sT
i 1 = 1, 0 ≤ si j ≤ 1, Fl = Yl (6)
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Algorithm 4 SSLDN-LL
Initialize: With training set T , Fl : class indicator matrix, DF :

distance matrix of Fl , Yx : l labeled instances, DX : distance
matrix of Yx .

Input: xt (new stream instance), p (the number of labeled
instance per class).
Output: None OR y.
1: if xt is labeled then
2: yt ∈ R

c×1: the known class indicator vector;
3: DF ← DF + dist (yt , Fl); //add new distance
4: DX ← DX + dist (xt ,Yx);
5: Fl ← Fl ∪ [yt]T , Yx ← Yx ∪ [xt ]T ;
6: if ∃ class j ,

�
i yi j > p then

7: Fl ← delete the oldest yi in Fl ;
8: Yx ← delete the oldest xi in Yx ;
9: end if

10: else
11: fxt = zero matrix ∈ R

c×1;
12: DF ← [DF + dist ( fxt , Fl)] ∈ R

(l+1)×(l+1);
13: DX ← [DX + dist (xt ,Yx)] ∈ R

(l+1)×(l+1);
14: initial α and S, L S = DS − ST+S

2 , Fu = −L−1
uu LulYl ;

15: y = argmax
j

Fi j , i = l + 1,∀ j = 1, 2, . . . , k;

16: DF ∈ R
l×l ← delete dist ( fxt , Fl) from DF ;

17: DX ∈ R
l×l ← delete dist (xt ,Yx) from DX ;

18: return y.
19: end if

that could be written as

min
F∈R(l+1)×c,Fl=Yl

Tr (F
T Ls F). (7)

According to the work [37], the final part of Fu can be
optimized and expressed as: Fu = −L−1

uu Lul Yl . Then, the
final prediction result of unlabeled data is passed through the
decision function

y = argmax
j

Fi j , i = l + 1 ∀ j = 1, 2, . . . , k. (8)

2) Classification Process Using SSLDN-LL: SSLDN-LL
always keeps a fixed number ( p) of labeled instances for each
known class. Therefore, the class indicator matrix (Fl ) and
similarity matrix (DF , DX ) built with labeled data are con-
stantly updated. Once the unlabeled instance xt is predicted,
SSLDN-LL will delete the class indicator vector (yu) and
similarity matrix vector [dist(yu, Fl) and dist(xt ,Yx)]. In other
words, SSLDN-LL always uses a fixed number (l = p ∗ k,
where k is the number of known classes) of labeled instances
to predict the target one unlabeled new arriving instance. The
details of SSLDN-LL are shown in Algorithm 4.

Specifically, with the training set T , SSLDN-LL initializes
and maintains the following matrix: Fl = Yl represents the
class indicator matrix, Yx represents the matrix formed by
labeled instances, and DF and DX represent the distance
matrix of Fl and Yx . During data stream, when a new instance
xt arrives, if xt is labeled, SSLDN-LL uses xt to updates DF

and DX in steps 2–5. Once the number of labeled instances
for class j exceeds p, steps 6–9 delete the information of
the oldest labeled instance that belongs to class j . If the

Algorithm 5 SSLDN-U
Input: B (instances buffer), s (maximum size of B), p (the

number of labeled instance per class).
Output:None.
1: if |B| ≥ s then
2: T ← T ∪ B;
3: rebuild SSLDN-Forest(T, z, ϕ);
4: Bcenter ← meanb∈B(b);
5: X p ∈ R p×d , yp ∈ Rc×p ← select p instances from B

that are close to Bcenter

6: For current SSLDN-LL, Fl : original class indicator
matrix, DF : distance matrix of Fl , Yx : original l labeled
data, DX : distance matrix of Yx .

7: DF ← DF + dist (yp, Fl);
8: DX ← DX + dist (X p,Yx );
9: Fl ← Fl ∪ [yp]T , Yx ← Yx ∪ [X p]T ;

10: retrain SSLDN-LL(Fl, DF ,Yx , DX , p);
11: end if

sample xt is unlabeled, steps 11–18 determine the class label
(y) of xt . Step 11 initializes the indicator vector of xt as
fxt = [0, 0, . . . , 0]T ∈ R

c×1, F = [Fl; fxt ]. Then, we update
DF and DX with the adding new similarity matrix vector
(dist( fxt , Fl)), dist(xt ,Yx )). Next, step 15 determines the class
label of xt by the decision function [see (8)] mentioned above.
After predicting xt , we delete the distance information of xt

in both DF and Dx . There are two main reasons for this:
1) avoid the impact of misclassification of xt on the subsequent
stream instances and 2) ensure the fixed number of labeled
instances for the subsequent classification.

C. Update Model: SSLDN-U
The model update procedure starts when the number of

instances in novel class data buffer B reaches the maximum
buffer size s. When the buffer is full, the model needs to be
updated. All the instances in the buffer are regarded as a novel
class, and we specify a new label for them. The instances in
B are marked as the same new label to update the detector
SSLDN-Forest and the classifier SSLDN-LL. The detail of the
update algorithm SSLDN-U is shown in Algorithm 5.

Specifically, in steps 2 and 3, SSLDN-U combines the orig-
inal data collector T with B and rebuilds the SSLDN-Forest.
SSLDN-U treats all instances in B as the same new known
class that facilitates the detection of potential novel class.
Steps 4–10 are the update of the classifier SSLDN-LL.
In step 4, SSLDN-U calculates the center point of all the
instances in B . Step 5 selects the p nearest instances close
to the center of B . This selection can make the classifier to be
more robust in the classification for the following data stream.
In steps 6–9, SSLDN-U updates DF , DX , Fl , and Yx . Finally,
step 10 rebuilds the classifier SSLDN-LL.

D. Complexity Analysis

In this section, we analyze the time and space complexity of
our new framework according to the three main components:
SSLDN-Forest, SSLDN-LL, and SSLDN-U.

For SSLDN-Forest, in the training phase, the time com-
plexity is to construct z SSLDN-Trees by randomly selecting
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ϕ samples from T for each tree. For each SSLDN-Tree,
the time complexity of allocating ϕ data points would be
O(ϕ log2(N)d), where d is the feature dimension of target
dataset and N is the number of nodes. In the detection
phase, the most time-consuming is to compare the area range
of the test point with the tree nodes. The time complexity
of the detection phase is O(z log2(N)d). Thus, the total time
complexity of SSLDN-Forest is O(zϕ log2(N)d). Meanwhile,
the space required for SSLDN-Forest includes the buffer with
size s and the centers for all tree nodes. Thus, the space
complexity is O(s + z N).

The time complexity of SSLDN-LL is related to the number
of labeled instances. The maximum time consumption is
to add new distance into DF and DX . Therefore, the time
complexity of SSLDN-LL is O(ld), where l is the number
of label instances in the classifier. The space consumption
for SSLDN-LL is to store the l labeled instances and one
unlabeled new stream instance, where each instance has
d-dimensional features. Thus, the space complexity is
O(ld + d).

For SSLDN-U, the main time consumption is to calculate
the center point of the data in the buffer and the time
complexity is O(sd). In the update phase, data are mainly
operated from the buffer, so the maximum space complexity
at this stage is the size of the buffer O(s).

V. EXPERIMENTS

A. Experimental Setup

This section describes experimental settings, including
the details of datasets, data stream simulation, performance
evaluation, competing algorithms, and parameters’ setting.
All algorithms are executed in the PYTHON environment.

1) Datasets: To evaluate the performance of the pro-
posed approach, we adopt two kinds of datasets, i.e.,
benchmark and real-world textual data stream. For bench-
mark datasets, we use seven multiclass datasets, including

(satimage, pendigits, HAR),1 (USPS, MNIST-10K, MNIST),2

and Fashion-MNIST.3 In addition, we use NYTimes [14] as
a real-world data stream, which is crawled news from the
website between 2014 and 2017 using the New York Times
API.4 Specific descriptions of these eight datasets are shown
in Table I. We use only two known classes and one novel class
to obtain the greatest difficulty for these datasets during the
novel class detection task. We tested different combinations
of known and novel classes and chose the combinations of
high-α and low-α in purpose. Besides, the datasets need to be
normalized to handle features with different scales.

A more detailed description of these datasets is given as
follows.

1) Satimage: The satimage database consists of the multi-
spectral values of pixels in 3 × 3 neighborhoods in a
satellite image and the classification associated with the

1https://archive.ics.uci.edu/ml/index.php
2http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
3https://www.kaggle.com/zalando-research/fashionmnist
4http://developer.nytimes.com/

TABLE I

SUMMARY OF DATASETS USED IN THE EXPERIMENTS. THE LEFT PART IS
THE BASIC INFORMATION OF EACH DATASET. THE RIGHT PART IS THE

VALUE OF α VARYING WITH DIFFERENT CLASSES. FOR EXAMPLE,
“3,1,7(8.9975)” MEANS THAT THE KNOWN CLASS LABELS

ARE “3” AND “1,” THE NOVEL CLASS LABEL IS “7,”
AND THE SEPARATION FACTOR α BETWEEN THE NOVEL

CLASS AND THE KNOWN CLASS IS 8.9975, WHICH

REPRESENTS THE DIFFICULTY OF DETECTING
THE NOVEL CLASS

central pixel in each neighborhood. The attributes are
numerical, in the range of 0–255 (8 bits).

2) USPS: In this article, the USPS handwritten digit data-
base contains 9298 16 × 16 handwritten digit images,
which are then split into 7291 training images and
2007 test images, including all digits “0–9.”

3) HAR: The HAR dataset is the Human Activity Recog-
nition database. It is built from the recordings of 30
subjects performing activities of daily living (ADLs)
while carrying a waist-mounted smartphone with embed-
ded inertial sensors. Associated tasks of HAR can be
used for classification and clustering.

4) MNIST-10K: MNIST-10K contains 10 000 samples,
a trimmed version of the larger MNIST handwritten
digits. The MNIST-10K dataset is a ten-class classifi-
cation dataset consisting of 10 000 grayscale images of
28 × 28 pixels representing handwritten digits and their
associated label (a number between 0 and 9).

5) Pendigits: The pendigits dataset is used for evaluation.
This dataset is on pen-based digit recognition of hand-
written digits. The pendigits dataset has a multiclass
classification that uses ten classes and four types of
representations. The number of attributes is 16 inputs
and one class attribute. All the attributes in the dataset
are numeric, and there are no missing attribute values.

6) MNIST: The MNIST dataset is from the National Insti-
tute of Standards and Technology (NIST). The training
set consists of handwritten numbers from 250 different
people, of which 50% are high school students and
50% are from the Census Bureau. The MNIST dataset
contains 60 000 images in the training set, each size
28 × 28 pixels representing handwritten digits and their
associated label (a number between 0 and 9).

7) Fashion-MNIST: Fashion-MNIST is a new dataset com-
prising 28 × 28 grayscale images of 70 000 fashion
products from ten categories. The training set has
60 000 images, and the test set has 10 000 images.
Fashion-MNIST is intended to serve as a direct drop-in
replacement for the original MNIST dataset for bench-
marking machine learning algorithms, as it shares the
same image size, data format, and the structure of
training and testing splits.
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8) NYTimes: It is crawled over a period of time by using
the New York Times API. There are 10k news items
categorized into eight classes. In this article, NYTimes
is crawled news from the website between 2014 and
2017 and contains 35 000 latest news items. Each news
item is classified into six categories, “Arts,” “Business
Day,” “Sports,” “U.S.,” “Technology,” and “World.”
Each news story is converted into a 100-D vector using
the word2vec technique [14].

2) Data Streams Simulation: We apply two types of data
stream simulation for each dataset: fixed α and random α.
In fixed α, there are two periods in the whole data stream: the
training and streaming simulation. We first calculate the values
of α for all combinations and then select two values of α (the
highest one and the lowest one). For the fixed α problem,
we only assume that one novel class appears in the second
streaming simulation period. For the random α scenario, as the
known class and the novel class are randomly selected from
the whole class set, the data stream will have a mixture value
of α.

For example, on the MNIST dataset, there are a total of
ten classes. When simulating fixed α, we need to calculate
different values of α first. The high α category is (1, 8,
9), where the known class labels are 1 and 8, and the new
stream class is 9. Therefore, we use classes 1 and 8 as the
initial training set, and the size is 2000 per class. Then,
we select the instances of class labels 1, 8, and 9 as the
stream data simulation, and the size is 1000 per class. The
low α simulation stream is similar to the high α. When
simulating random α, we randomly select two class labels
from ten classes as known classes and randomly select one
of the remaining class labels as the novel class.

3) Performance Metrics: Two measurements are used in
this article. One is accuracy = ((Nnew + Nknown)/N), where
Nnew is the number of emerging class instances identified
correctly, Nknow is number of known class instances classi-
fied correctly, and N is the total number of instances. Another
measure is macro-averaged F1 = ((2× P × R)/(P + R)),
which produces a combined effect of precision (P) and recall
(R) of the detection performance in each class, where P =
(TP/(TP + FP)), R = (TP/(TP + FN)), where TP is true
positive, FP is false positive, and FN is false negative.

4) Competing Algorithms and Parameters Setting: We com-
pare our new framework with the following.

1) SEEN [12]: An SSL framework that is capable of
handling emerging new class in a dynamic data stream.
In experiments, we set hm = 7, s = 50, φ = 128,
τ = 50, and k = half of the number of features.

2) ORSSL [11]: A semisupervised algorithm exploits the
online microclusters to summarize the streaming data
in a compact form and is further used to classify
the incoming data stream instances. ORSSL employs
K-means, where K (number of clusters per class) = 50,
maxMC = 1000, and θ = 4.

3) SENNE [14]: It utilizes the nearest neighbor ensemble
to deal with problems of different geometric distances.
In SENNE, we set t = 0.88, ψ = 20, p = 100, and
s = 300.

4) iForest [30]: It is an unsupervised anomaly detector.
In iForest, according to the settings in [30], the number
of trees in iForest is set to 100 and ψ = 256.

5) LOF [28]: A approach that loosely related to density-
based clustering. For LOF, we set MinPts = 50.

In the following experiments, we use the parameter settings
mentioned above for these competing algorithms. Besides,
since iForest and LOF do not make classifications, we combine
them with SVM as a classifier.

5) Number of Labels: Throughout the experiment, the num-
ber of labeled instances is set as follows. SSLDN and SEEN
use 1% labeled data in both training and testing. ORSSL
applies 100% labeled data in the initial model construction
and uses 1% labeled data in the detection part. SENNE
uses 100% labeled data. iForest + SVM and LOF + SLDN
are unsupervised anomaly detection algorithms and use 1%
labeled data in the detection. Besides, we analyze the impact
of the number of labeled instances in Section V-E.

B. Parametric Analysis of SSLDN
We analyze the parameters used in SSLDN according to the

components as follows.
In SSLDN-Forest, there are four parameters.
1) ϕ: It represents the number of subsamples randomly

selected from the training set to construct SSLDN-Tree.
The size of ϕ affects the detection accuracy and the
height of the tree. Fig. 5(a) and (b) shows that a fixed
value of ϕ cannot fit all these datasets, which fluctuates
greatly on some datasets. Specifically, ϕ = 20 is the best
for the pendigits, satimage, and USPS datasets. On the
MNIST-10K, MNIST, and NYTimes datasets, ϕ = 9 is
better. On the HAR and Fasion-MNIST datasets, ϕ =
30 is a good choice.

2) z: It is the number of SSLDN-Trees, and the value of
z affects the accuracy of detecting novel class. From
Fig. 5(c) and (d), we can see that the influence of
different values of z is small on most of these datasets.
Therefore, we select z = 15 for all these datasets in the
experiments.

3) MinSize: It is the minimum number of instances of
the leaf node for SSLDN-Tree. The value of MinSize
determines the height of the constituted SSLDN-Tree.
Because we set the values of ϕ 9, 20, or 30 for these
datasets, MinSize must be smaller than ϕ. Thus, we set
MinSize = 4 in the experiments.

4) s: It is the size of the buffer and is used to store novel
class instances. In general, the value of s has little effect
on the performance of the entire algorithm. Therefore,
we set s = 200 as an experience value.

In the classifier SSLDN-LL, there are two required
parameters.

1) p: It is used to control the number of labeled instances
for each known class, and p affects the running time
and classification accuracy. The accuracy and F1 varying
with different values of p can be seen in Fig. 5(e) and (f),
respectively. In general, with the increase of the value of
p, the performance decreases. Thus, we select p = 4 as
the best choice.
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Fig. 5. Accuracy and F1 varying with different values of ϕ, p, and z.
(a) Accuracy varying with ϕ. (b) F1 varying with ϕ. (c) Accuracy varying
with z. (d) F1 varying with z. (e) Accuracy varying with p. (f) F1 varying
with p.

2) k: It is the number of nearest neighbors in SSLDN-LL.
Since we set p = 4 for these datasets, the minimum
number of labels for a known class is 2. Therefore,
we set k = 1.

C. SSLDN Versus Competing Algorithms
To verify the effectiveness of SSLDN, we conduct exper-

iments on two types of stream data simulations: 1) fixed α:
low α and high α and 2) random α.

1) Results on Fixed α: To examine the effect of high α
and low α on the performances of all competing approaches,
we select specific three classes in each dataset to simulate the
SSENC scenarios in the cases of both high α and low α. The
selected classes and the corresponding α values are shown
in Table I.

Tables II and III present the accuracy and F1 of these
competing algorithms on these datasets in the cases of high
and low α respectively. In summary, the low α performance is
worse than that on high α, mainly because it is more difficult to
predict the data stream on low α than on high α. In the high α
case, SSLDN achieves the best performance on all these eight
datasets on accuracy. On F1, SSLDN performs best on six of
eight datasets. Meanwhile, the F1 values of our algorithm on
HAR and MNIST-10K are competing for the best results with
only 0.0036 and 0.001 lower, respectively. In the low α case,
SSLDN outperforms other algorithms on six of eight datasets,

Fig. 6. Statistical test of these competing algorithms.

with an average improvement of 0.133 and 0.0487 on accuracy
and F1, respectively. Therefore, SSLDN performs better than
other competing algorithms in both fixed high α and low α.

2) Results on Random α: Table IV shows the results
of the random α scenario, where known classes and new
stream classes are randomly selected from the whole class
set. SSLDN performs better than all other competing methods
on seven of eight datasets at least, in both cases of accuracy
and F1. Besides, compared with the best performance of other
methods, SSLDN improves accuracy and F1 by an average of
0.1111 and 0.0361, respectively. Thus, SSLDN achieves the
best performance in the case of a random value of α.

3) Statistical Test: To compare the performances of the
above algorithms from a statistical viewpoint, we use the
Friedman test with a 95% confidence level. Null hypothesis H0
is proposed: there is no difference in the performance among
these algorithms. If the null hypothesis is rejected, we further
use the Nemenyi post hoc test to find these differences.
Table V shows the average ranks of these competing algo-
rithms in the cases of accuracy and F1 varying with different
values of α. The p-value of Friedman test is 4.3382e−07.
Thus, H0 is rejected, and these algorithms have a significant
difference in performance. According to the Nemenyi test,
the value of critical difference (CD) is 2.6657. We build CD
diagrams, as shown in Fig. 6.

4) Result Analysis: From the results of Tables II–V, we can
conclude that SSLDN is superior to all the other competing
algorithms on these datasets. Two main factors guarantee the
superiority of our algorithm: 1) For the novel class detec-
tion SSLDN-Forest, each SSLDN-Tree split instance uses the
median of random feature values that ensure that the tree
structure will not be affected even if there are different scales
of feature values in the stream data and 2) for the classifier
SSLDN-LL, we always maintain only one unlabeled known
class instance and l labeled instances in the whole process,
which ensures the accuracy of the result.

1) SSLDN Versus SEEN: SEEN is also based on random
trees, but when SEEN constructs SEENTree, only half
of the full features are used to determine the split point.
Therefore, SEEN is likely to cause the loss of essential
attributes on high-dimensional datasets (such as images).
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TABLE II

ACCURACY AND F1 IN THE HIGH α SCENARIO

TABLE III

ACCURACY AND F1 IN THE LOW α SCENARIO

TABLE IV

ACCURACY AND F1 IN THE RANDOM α SCENARIO

2) SSLDN Versus ORSSL: ORSSL dynamically maintains a
set of microclusters, eliminating outdated low-precision
microclusters from the model to adapt to the evolving
concepts of data streams. However, the microclusters
maintained by ORSSL could not capture the hidden local
cluster structure for incoming data with non-Gaussian

distributions, and they tend to have bad performance on
high-dimensional datasets.

3) SSLDN Versus SENNE: SENNE addresses the similar
problems proposed in this article, but it has the following
limitations: 1) the method has a fixed judgment thresh-
old, so it cannot adapt to the continuously generated
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TABLE V

AVERAGE RANKS OF THE COMPETING ALGORITHMS VARYING WITH
DIFFERENT VALUES OF α

data stream and 2) SENNE uses supervised data when
constructing the initial model, which is often not in line
with the actual situation.

4) SSLDN Versus iForest: iForest is sensitive to the stream
instances because both attributes and split points are
selected at random. When the feature values in the data
stream differ significantly, the reliability of iForest is
reduced.

5) SSLDN Versus LOF: LOF is a density-based outlier
detection method. However, LOF has a significant detec-
tion effect on data with large density differences and has
limited adaptation to different datasets.

In summary, due to the effective novel class detection and
known classes’ classification components, SSLDN performs
better than other competing algorithms in solving SSENC
problems varying different degrees of separation.

D. Long Data Stream Simulation on NYTimes

In addition to experiments on seven benchmark datasets,
we validate the efficacy of SSLDN in real-world data stream-
ing applications. We apply the NYTimes dataset as a long data
stream simulation.

The simulation of long data streams on the NYTimes dataset
consists of multiple rounds. In the first round, we select
two known classes, one novel class from the dataset, and
500 randomly chosen instances for each class (a total of
1500 instances). We still chose two known classes and one
novel class in the second round, but 600 randomly selected
instances for each class (1800 instances). In the following
rounds, each class increases by 100 instances. We finish the
simulation until the number of instances for each class is 3300.
All selected instances are sorted by the timestamp and flow
into the model one by one.

We plot the accuracy and F1 curves regarding different
timestamps of these competing approaches, as reported in
Fig. 7. For LOF + SVM, it behaves the worst because
LOF requires the detected instances that must have a sig-
nificant density difference. Meanwhile, SEEN, SENNE, and
iForest + SVM achieve a comparably satisfying performance.
With the increase of data stream, all these competing algo-
rithms can maintain a relatively stable performance. When
the data streams reached 4000, SSLDN and ORRSL gradu-
ally increased and have remained stable since then. In total,
SSLDN can perform better than other competing algorithms,
even in a long data stream.

Fig. 7. (a) Accuracy and (b) F1 curves of these competing algorithms on a
long data stream simulation.

Fig. 8. Influence of the number of labeled instances on three datasets.
(a) USPS. (b) HAR. (c) Pendigits.

E. Impact of the Number of Labeled Instances

The number of labeled instances can significantly affect
the prediction accuracy of unlabeled stream instances. For
SSLDN, we study the impact of the number of labeled
instances on three datasets (USPS, HAR, and pendigits), and
the results are reported in Fig. 8.

With the increase in the number of labeled instances, both
accuracy and F1 have some rapid improvements. On the HAR
dataset, both accuracy and F1 keep rising with the ratio of
labeled instances. On the USPS and pendigits datasets, there
is a period of decline when the ratio is between 0.2 and
0.3. Therefore, more labeled instances do not necessarily
mean an increase in performance. However, in real-world
applications, the ratio of labeled instances is very rare, often
less than 1%. Thus, we choose to use 1% labeled instances
in the experiments to simulate semisupervised stream data.
Nevertheless, even if only 1% of the data are labeled, SSLDN
can perform well on these datasets.

F. Runtime Comparison

We apply the running time comparison in the case of
random α that can better reflect real application scenarios.
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Fig. 9. Runtime comparisons in the random α scenario.

Fig. 9 reports the runtime comparisons of these competing
algorithms in the random α scenario.

Fig. 9 shows that SSLDN has the shortest running time
on all these datasets. There are two reasons to ensure the
efficiency of our new algorithm: 1) only a small number of ran-
domly selected samples are used to construct the SSLDN-Tree
in the SSLDN-Forest and 2) for SSLDN-LL, the number of
labeled instances is fixed and not all labeled instances are
used for classification prediction, which significantly reduces
the running time. In contrast, SEEN spends more running
time than SSLDN because, when constructing SEENTree,
each node must use the K-means algorithm to get two cluster
centers. ORSSL dynamically maintains a set of microclusters,
eliminating outdated low-precision microclusters from the
model to adapt to the evolving concepts of data streams.
However, frequent updates and the importance of cluster
analysis increase the overall runtime of ORSSL. SENNE
needs to construct a hypersphere for each training set when
constructing the initial model. In order to obtain the smallest
center point covering the test data, SENNE calculates the
distance between the test data and a specific class of sampled
data, and the distance calculation takes much time. Since
iForest and LOF have no updating process, the running time
of these two algorithms is only the detection time. Therefore,
these two algorithms are faster than SSLDN. To sum up,
SSLDN outperforms other competing algorithms on running
time, which contains the updating process.

VI. CONCLUSION

The difficult novel class detection in semisupervised stream-
ing data is a practical and challenging problem. This article
proposes the SSLDN framework to tackle the difficult novel
class detection in the SSENC problem. The proposed method
consists of three main components: 1) a detector based on the
random tree that is used to detect novel class; 2) a classifier
with restricting the number of labeled instances that can clas-
sify unlabeled stream instances accurately; and 3) an efficiency
update model. SSLDN makes full use of few labeled instances,
automatically updates the threshold, improves detection and
classification accuracy, and shortens running time. Empirical
studies on several stream simulation datasets validate the
effectiveness of SSLDN in handling emerging novel class
under a semisupervised streaming data environment. However,

SSLDN can handle only one new emerging class during the
data stream each time. Thus, we will attempt to deal with
multiple new emerging classes in streaming data in our future
work. Meanwhile, the connection between concept drift and
concept evolution is an exciting issue, and we will study it too.
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