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Abstract
In practical applications, we are more likely to face semi-supervised data with a small amount of independent class label or
constraint information and many unlabeled instances. For semi-supervised clustering, taking advantage of the small portion
of preliminary label information can significantly improve the discriminability of representations. Spectral clustering has
the benefits of handling any shape data distribution and converging to the optimal global solution but is susceptible to noisy
data. However, it is inevitable to contain noise for real-world applications that significantly reduce clustering performance.
Motivated by this, we propose a novel Robust Semi-supervised Spectral Clustering method (named RSSC) to address
clustering on noise semi-supervised datasets. Specifically, in terms of data transductive warping, we map the entire semi-
supervised dataset into a new data space where labeled data is close to the canonical coordinate system, and unlabeled data
with similar characteristics should be close to those labeled data. The noise data is close to the origin of the coordinate and
form the noise cluster because there is no guidance. Finally, samples in the same cluster are close, and different clusters
are separated. Extensive experimental results on sixteen real-world datasets demonstrate that RSSC outperforms other
state-of-the-art clustering methods on performance and robustness.

Keywords Clustering · Semi-supervised clustering · Noisy data · Spectral clustering · Robustness · Data transductive
warping

1 Introduction

Data clustering is a core technology for machine learning
and data mining, which aims to divide a set of unlabeled
data into multiple clusters so that the data in the same
clusters are more “similar” to each other [1]. Motivated by
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the fact that compared with the small number of labeled
data in real-world applications, it is relatively easy to
obtain a large amount of unlabeled data, semi-supervised
learning was developed and applied widely [47]. Semi-
supervised clustering employs a small amount of labeled
data to aid unsupervised clustering and has widely applied
in different practical applications, such as natural language
processing [4], computer vision [34], bioinformatics [2],
and image segmentation [38]. Generally speaking, there are
two ways to use supervised information [6]. One is to obtain
constraints based on the existing supervision information:
must-link and the cannot-link constraint. The other is to
use labeled data to assist clustering directly. For real-world
applications, it is inevitable to contain noisy data that may
significantly reduce the algorithm’s performance. There are
mainly two strategies for noise data clustering: (1) try to
obtain the correct clustering from noisy data; (2) try to
obtain the correct clustering by discriminating noise data.
The former focuses on data partitioning without considering
noise, and the output result is noisy clustering. The latter
focuses on simultaneous clustering and denoising, and the
output result is noise-free clustering. In reality, the latter is
more challenging and meaningful. There are some works
focus on robust data clustering, such as the algorithms
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based on density [42, 46], via node cutting [14], via rank
minimization [35], or decomposing the similarity graph into
two latent factors [7]. These robust models can tackle the
issue of noises or outliers effectively in the unsupervised
field.

Besides, some outlier detection methods have been
proposed in recent years, such as [10, 23, 33]. Theoretically,
it is possible to apply outlier detection before semi-
supervised clustering. However, we generally do not do
this. The main reason is that these two tasks are strongly
coupled and should not be conducted as two separate tasks
[19]. Besides, combining clustering and outlier detection
can bring additional benefits include: (1) the resulting
clusters tend to be compact and semantically coherent;
(2) the clusters are more robust against data perturbations;
and (3) the outliers are contextualized by the clusters
and more interpretable [24]. Therefore, for robust semi-
supervised clustering, we complete the noise detection and
clustering simultaneously. In other words, we take the
entire noise dataset as the target and consider the problem
from a global perspective. The designed method should
consider maximizing the use of a small amount of label
information and complete the noise detection and clustering
simultaneously.

Specifically, in some real-world clustering tasks, such
as images and texts, the dimensionality of data can be
extremely high. Therefore, there will inevitably be a
lot of irrelevant and redundant features. If we cluster
directly on the original datasets, these redundant and
noisy information may degrade the performance and bring
unnecessary computational costs. One common point of
various methods for noise removal, model reduction,
and feasibility reconstruction is to replace the original
data with a low-dimensional representation obtained by
subspace approximation. Therefore, to overcome the curse
of dimensionality, some non-negative matrix factorization
(NMF) and low-rank representation (LRR) based methods
were proposed to obtain low-dimensional representation
for noise data [9, 25, 40]. According to the experimental
settings and results, all these aforementioned methods may
have sound effects in semi-supervised robustness. However,
there are two main shortcomings for these robust clustering
methods: (1) most algorithms obtain the optimal solution
after multiple iterations, and the locally optimal solution is
iteratively reduced to get the final result, but this may not be
optimal in global; (2) most algorithms add little noise in the
experiments, and when the noise ratio is large, the clustering
performance of these algorithms decrease significantly.

Based on the theory of spectrograms, spectral clustering
has the advantage of being able to cluster in a sample
space of any shape and converge to the optimal global
solution. The essence of spectral clustering is to transform
the clustering problem into the optimal division problem

of graphs and has been widely used in text clustering
[43], gene expression analysis [44], and other fields [13].
However, spectral clustering is susceptible to noisy data,
while that is inevitable to contain noise in real-world
applications. Therefore, we refine spectral clustering for
robust semi-supervised clustering to achieve robustness and
better clustering results in this paper. As far as we know,
this is the first work to focus on the robustness of spectral
clustering for semi-supervised noise data.

Transductive warping is the process of mapping the
original data to a new space [18]. In general, assuming that
X represents the original data, Y represents the data after the
warping that we need to find. Constructing a loss function
to obtain Y can be considered a transductive process called
transductive warping. Transductive warping can be used
in spectral clustering to reduce the influence of noise
[18], which is created by affine transformation and elastic
deformation of existing data. Each cluster of an arbitrary
shape is mapped as a relatively compact cluster. The noise
points are also mapped to form a relatively compact cluster,
and different clusters become well separated. By applying
data warping to reshape the noisy data, the block structure
(destroyed by noise) of the affinity matrix can be recovered.

Semi-supervised clustering is more in line with actual
application scenarios because labels are usually difficult or
expensive to obtain. Spectral clustering has the advantages
of handling any shape data distribution and converging
to the optimal global solution but is susceptible to noisy
data. However, it is inevitable to contain noise in real-
world applications. Motivated by this, we propose a new
Robust Semi-supervised Spectral Clustering algorithm for
noise data, named RSSC. After data warping, the labeled
data is close to the unit canonical coordinate system, while
the unlabeled data is close to the labeled data with similar
characteristics. The noise data will be close to the origin
in canonical coordinates without label guidance. Thus, each
cluster of an arbitrary shape is mapped to a relatively
compact cluster, and different clusters are well separated.
More details can be seen in Section 3.1. The contributions
of this paper include the following:

– Inspired by the idea of data transductive warping, RSSC
can restore the affinity matrix block structure destroyed
by noise, which means that RSSC regards noisy data
as an independent cluster. RSSC can simultaneously
identify noise and complete data clustering tasks even
for a large amount of noise.

– In RSSC, the class label information is converted into
a matrix form and used to construct the objective
function. The main object function we constructed is
convex and can obtain the optimal global solution.
Thus, RSSC is efficient and can improve the robust
clustering performance significantly.
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– Extensive experiments have been conducted on sixteen
real-world datasets to verify the effectiveness and
robustness of RSSC when compared with other state-of-
art algorithms. Meanwhile, the robustness assessment
experiments indicate that RSSC is very good at
identifying noise data, even noise is considerable.

The rest of this paper is organized as follows. In
Section 2, we describe the related work. In Section 3,
we introduce our new robust semi-supervised clustering
algorithm in detail. Section 4 verifies the superiority
and effectiveness of the RSSC algorithm through the
experiments on different types of datasets. The final part
is the conclusions of this paper and some future research
prospects.

2 Related work

Semi-supervised clustering is an important research direc-
tion in data mining, which uses limited prior knowledge
to guide the search process and improve clustering quality.
In recent years, some new semi-supervised clustering algo-
rithms have been proposed. For example, Śmieja et al. [31]
introduced a neural network framework for semi-supervised
clustering with pairwise (must-link or cannot-link) con-
straints. Yu et al. [45] proposed a new double weight-
ing semi-supervised ensemble clustering method based
on selected constraint projection, which applies constraint
weighting and ensemble member weighting to address
the limitations. Ienco et al. [11] proposed a new semi-
supervised clustering algorithm that directly exploits prior
knowledge, under the form of labeled examples, avoid-
ing the necessity to derive constraints. Wu et al. [41] took
advantage of the supervised information by using them to
construct a superior affinity matrix. Mai et al. [21] proposed
a new spectral semi-supervised clustering method using the
known data to complete good performance. However, all
these semi-supervised models are not robust to noises, and
it is inevitable to contain noise in real-world applications.

Besides, metric learning plays an essential role in
many machine learning algorithms and is a fundamental
problem in data mining and knowledge discovery [39].
More recently, researchers have given much attention
to metric learning for semi-supervised algorithms. For
instance, Baghshah et al. [5] considered the topological
structure of data along with both positive and negative
constraints, proposed a kernel-based metric learning method
that provides a non-linear transformation. Li et al. [17]
proposed a novel semi-supervised clustering approach
based on deep metric learning, which leverages deep metric
learning and semi-supervised learning effectively in a novel
way. Sanodiya et al. [28] proposed a new kernel semi--

supervised distance metric learning using a multi-objective
optimization approach to overcome the problems associated
with the K-means clustering algorithm. Shen et al. [29]
proposed two types of distributed semi-supervised metric
learning frameworks, which make use of both labeled and
unlabeled data pairs. Nevertheless, these metric learning
semi-supervised algorithms do not consider the effect of
noise during clustering.

In order to solve the influence of noise on the clustering
results, some robust clustering methods are proposed. More
specifically, Zhou et al. [46] used KDE (kernel density
estimation) to optimize local density and proposed a
robust clustering algorithm named IVDPC, which solving
the classification problem of data with different shapes
and distribution. However, KDE is acceptably accurate
in one-dimensional (1D) or 2D data, but becomes highly
inaccurate for higher dimensional or sparse data. Bojchevski
et al. [7] proposed the RSC that can enhance spectral
clustering’s robustness by decomposing the similarity graph
into two latent factors: sparse corruption and clean data.
Their experiments demonstrated the robustness of RSC
against spectral clustering methods. However, RSC requires
constant iterative calculations. Thus, an edge marked
as corrupted in a previous iteration might be evaluated
as non-corrupted later, which may decrease clustering
performance. Tao et al. [35] proposed a novel Robust
Spectral Ensemble Clustering (RSEC) algorithm, which not
only targeted at a denoising task for the co-association
matrix but also focused on revealing its cluster structure.
Nevertheless, RSEC needs to solve n optimization sub-
problems over n data points and calculate the graph
Laplacian matrix’s eigenvectors through the Singular Value
Thresholding (SVT) operator, which should take much time.

Due to the advantages of semi-supervised clustering
and considering the inevitable noise problem, robust semi-
supervised clustering algorithms are gradually being studied
by scholars. For example, Wang et al. [40] used the non-
negative matrix factorization method(NMF), which can
employ the label information with a constraint matrix and
address the noisy and sparse data simultaneously. However,
graph dual regularized NMF learning algorithms may
have divergent points, limiting the performance when low-
dimensional representations are used for clustering. The
same problem exists in several other non-negative matrices
factorization-based methods, such as [9, 25]. Peng et al.
[25] utilized the dual semi-supervised information to learn
the more discriminative data representation, simultaneously
adopted correntropy as the similarity measure for reducing
the negative influence of non-Gaussian noise and outliers.
However, this method cannot obtain an excellent local
optimal solution and only verify algorithm performance
on image data. Fang et al. [9] proposed a robust semi-
supervised subspace clustering method based on non-
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negative low-rank representation to obtain discriminant
Low-rank representation (LRR) coefficients, which can
address the overall optimum problem by integrating
the affinity matrix construction and subspace clustering.
Nevertheless, it used the singular value decomposition
(SVD), which is time-consuming if many samples are vast.
Lai et al. [16] proposed a new framework that generates
base partitions in an unsupervised manner and attributes
different weights to each cluster, which using k-means with
both random sampling and random subspace techniques.
Nevertheless, it also has obvious limitations: the algorithm
must determine each cluster’s center in advance. The choice
of these cluster centers determines the quality of the
clustering results. Besides, the algorithm is only effective
for a small amount of noise, and it can only deal with
low-noise data (up to 20% of noise).

Based on the transductive theory, the data warping
method is applied in different areas. For example, Ma
et al. [20] proposed kernel warping to induce feature
representations that respect invariances that reach beyond
transformation. The framework is efficient and flexible
when applied to the convolutional kernel network. Qian
et al. [26] incorporated the underlying manifold structure
of both labeled and unlabeled data into the learning of a
classifier via warping a reproducing kernel Hilbert space
for sensor-based activity recognition problems. Ionescu et
al. [12] derived an approximate learning procedure for data-
dependent kernels that performs well in practice, which
relies on low-dimensional kernel approximations and a
warping term depending on a geometric operator. All these
methods mentioned above demonstrate the effectiveness of
data warping.

Inspired by the idea of data transductive warping, we
propose a new robust semi-supervised spectral clustering
algorithm for noise data, named RSSC, which integrates
labeled instances as necessary information to improve
learning accuracy. RSSC can obtain a globally optimal
solution and perform well even with considerable noise.

3 Robust semi-supervised spectral clustering

This section first gives the formal definition of the research
problem and our new algorithm’s main ideas. Then, we
present our primary constructed loss function and its
optimization in detail. Based on these, we propose the
novel robust semi-supervised spectral clustering algorithm
(RSSC) and discuss it in detail.

3.1 The problem definition andmain ideas

Given a noisy dataset with n data points X =
{x1, x2, ..., xn}, xi ∈ R

d , i = 1, ..., n, where subset S (S ⊂

X) represents a small number of labeled information in it.
For semi-supervised clustering, we aim to learn the clusters
C1, ..., Ck from X that is “as good as possible”.

Fig. 1 illustrates the basic idea of data transductive
warping. To facilitate observation, we simplified the
canonical coordinate system, assuming that I (i, ·)T forms
the canonical coordinate system of Rn, where I (i, ·) denotes
the ith row vector of the identity matrix I . In Fig. 1(a),
“�” and “©” represent two different classes of these data
and the characteristics of the instances that belong to the
same class are similar. Meanwhile, “✩” represents some
noise instances among them. As shown in Fig. 1(b), after
transductive warping, instances belonging to the differnt
classes are separated. As mentioned above, transductive
warping is the process of mapping the original data to a
new space [18]. In general, assuming that X represents the
original data, Y represents the data after the warping that
we need to find. Constructing a loss function to obtain Y

can be considered a transductive process, called transductive
warping. So, in the new data space, the instances belonging
to the same class are mapped to a relatively compact
cluster, and the noise points are also mapped to a relatively
compact cluster close to the origin in canonical coordinate.
Therefore, we can cluster the instances and distinct noise
points simultaneously after data transductive warping.

[Problem Definition] Inspired by the idea of data
warping [18] and the theory of transductive inference
[37], we construct the objective function for robust semi-
supervised clustering as follows:

Z∗ = arg min
Z

�(Z), (1)

�(Z) = ‖Zl−I‖2+‖Zu−Zl‖2+μ

2

n∑

i,j=1

wij (
zi√
dii

− zj√
djj

)2, (2)

where Z = (Zl, Zu) ∈ R
n is the dataset after mapping, Zl

and Zu are labeled and unlabeled data in the new space, μ is
the regularization parameter which controls the balance of
the loss function, W = [wij ]n×n represents the symmetric
adjacency matrix connecting the nodes xi and xj according
to (3), dii = ∑

j wij and djj = ∑
i wij .

Specifically, the first item of (2) aims to make the labeled
instances in the new data space as close to I as possible. The
original data X is warped into Z, where Z = (Zl, Zu) ∈
R

n×n, Zl, Zu ∈ R
n×n. For Zl , if xi is unlabeled, Zi

l =
(0, 0, ..., 0)T . For Zu, if xi is labeled, Zi

u = (0, 0, ..., 0)T .
In other words, for Zl , we only consider labeled data, while
Zu only considering unlabeled data. Besides, xl is converted
into zl in the new space near I (i, ·)T , and xu is converted
into zu near zl with similar features, where xl and xu

represent original labeled and unlabeled data respectively.
I (i, ·) denotes the ith row vector of identity matrix I , and
I (i, ·)T , i = 1, ..., n, form the canonical coordinate system
of R

n. In other words, we aim to map the original data
to the canonical coordinate system through the data warp,
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Fig. 1 Illustration of the basic
idea of data transductive
warping, where different shapes
denote differnt classes.
Compared with the distribution
of the original instances (a),
after data transductive warping,
instances belonging to the
differnt classes are separated (b)

making it possible to distinguish between clusters better.
The establishment of this canonical coordinate system, due
to the small amount of label data, should be constructed with
these labeled instances. Therefore, ‖Zl − I‖2 is equivalent
to creating new space data with a spatial limit, and the new
data can only be in the canonical coordinate system. After
transforming and mapping Xl to Zl , based on the idea that
the characteristics of points in the same cluster are similar,
the second item of (2) makes the unlabeled data Zu that in
the same cluster should be closer to Zl . Thus, combining the
first and second items, we can make the unlabeled instances
in the same cluster more compact with the labeled instances
in the new data space. The last item of (2) is the penalty
item. It ensures that each component of the points sharing
the same cluster has a relatively large and similar value. In
contrast, the component of the points should have different
values and be close to zero for the other clusters. The details
can be seen in Section 3.2.

In general, semi-supervised transductive learning can
improve unsupervised learning tasks by the small amount
of labeled data. When be applied in semi-supervised
clustering, the prior label information can better guide
the clustering process. Specifically, the new dataset after
data transductive warping is divided into several clusters
according to a specific inter-sample measurement criterion.
The samples in the same cluster are more similar under the
current measurement criterion, and the samples in different
clusters should be different. In Semi-supervised learning
[36], transductive methods do not construct a classifier for
the entire input space, and their predictive power is limited
to exactly those objects that it encounters during the training
phase. Therefore, transductive methods have no distinct
training and testing phases. Since no model of the input
space exists in transductive learners, information has to be
propagated via direct connections between data points.

Fig. 2 shows the flow charts of RSSC and standard
spectral clustering. The difference between RSSC and
standard spectral clustering is marked with a red dashed box
in Fig. 2(a). Specifically, standard spectral clustering works
directly on the original noise dataset without considering
the influence of noise on the similarity matrix. RSSC
first constructs the overall similarity matrix with p-nearest

neighbors to obtain the normalized Laplacian matrix, and
then together with the label information, the data in the new
data space is obtained through data warping. In the new
data space, the instances in the same cluster are relatively
compact, the instances in different clusters are relatively
separated, and the noise is regarded as a new cluster.
Finally, we apply spectral embedding clustering in the new
data space. RSSC consists of four main components:(1)
generate the p-nearest neighbor similarity matrix from the
original dataset, and then calculate the normalized graph
Laplacian matrix; (2) the label information is combined with
the normalized graph Laplacian matrix and applied to the
objective function to obtain a new dataset of the canonical
coordinate system; (3) recalculate the p-nearest neighbor
similarity matrix and normalized Laplacian matrix for the
data in the new space; (4) apply the normalized spectral
clustering method on the dataset of the new data space. The
experimental results in Section 4 indicate the effectiveness
and robustness of RSSC.

3.2 The solution of the objective function

Suppose W = [wij ]n×n represents the symmetric adjacency
matrix connecting the nodes xi and xj . Most existing
spectral clustering works [15, 18] construct fully connected
similarity graphs to form the similarity matrix. However,
this increases the complexity of the calculation, and one
has to pay attention to selecting a suitable scaling factor.
Thus, this paper uses a p-nearest neighbor graph to make
the formed matrix sparse. Specifically, we use an symmetric
p-nearest neighbor graph to construct a similarity graph W ,
where kNN(xi) represents the points of p domains of xi .
We use the following formula to construct the symmetric
graph:

wij = wji =
{

0, xi 	∈ kNN(xj ) ∧ xj 	∈ kNN(xi)

1, xi ∈ kNN(xj ) ∨ xj ∈ kNN(xi)
(3)

Inspired by the idea of data warping in [18], we aim to use
labeled data to guide clustering so that the data in the same
cluster after data warping should be as close as possible.

For the last item of (2), according to the Laplace opera-
tion on the graph [32], the following derivation can be made:
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Fig. 2 The flow charts of RSSC(a) and standard spectral clustering(b). The difference between RSSC and standard spectral clustering is marked
with a red dashed box

μ
n∑

i,j=1
wij (

zi√
dii

− zj√
djj

)2

= μZT (I − D−1/2WD−1/2)Z

= μZT D−1/2(D − W)D−1/2Z

= μZT L̄Z.

(4)

So, the loss function (2) can be further written as:

�(Z) = ‖Zl − I‖2 + ‖Zu − Zl‖2 + μZT L̄Z. (5)

where the unlabeled data in Zl are set to 0, and the labeled
data in Zu are set to 0 too. Then the first two items in (5)
can be further equivalent to:

‖Zl − I‖2 + ‖Zu − Zl‖2

= ‖SZ − I‖2 + ‖(I − S)Z − SZ‖2

= (SZ − I )T (SZ − I ) + (Z − 2SZ)T (Z − 2SZ)

= ‖Z − SI‖2 + ZT SZ + I − S

(6)

where S ∈ R
n×n is the diagonal matrix given by Sii =

I[l](i). If xi is unlabeled, the corresponding si = 0. Because
the normalized cut [30] employ the smallest eigenvector of
the graph Laplacian, the optimization μZT L̄Z of the last
term of (5) can be written as μtr(ZT K−1Z), where K−1

represents the inverse of the kernel when K is a nonsingular
matrix. If K is a singular matrix, K−1 represents a pseudo-
inverse. With the help of graph kernel, particularly, if r(λ) =
λ, r(L̄) turns out to be the normalized graph Laplacian L̄

and K = L̄−1, where λ is the eigenvalue of L̄, r(λ) is a
general regularization operators generated on L̄ according
to [32, 48]. We use this kind of graph kernel in this paper.

In terms of (5) and (6), our objective function (2) can be
rewritten as:

�∗(Z) = ‖Z−SI‖2+ZT SZ+I −S+μtr(ZT K−1Z). (7)

We want the gap between the labeled data and the canonical
coordinate system is as small as possible, and the data in the
same class are as compact as possible. Thus, the final goal
of (7) is:

Z∗ = arg min
Z

�∗(Z). (8)

3.3 Optimization of problem

The second derivative of (7) to Z is

∂
∂�∗(Z)

∂Z

∂Z
= 2I + 2S + 2μK−1. (9)

Because K−1 = L̄ is a positive definite matrix, det (2I +
2S + 2μK−1) > 0, indicating that (7) is a strictly convex
function. Thus, there is only one global minimum value.
Taking the derivative of �∗(Z) with respect to Z and setting
it to zero yields:

∂�∗(Z)

∂Z
= 2(Z − SI) + 2SZ + 2μK−1Z = 0. (10)

(10) can further simplified to (I + S + μK−1) = SI . Thus,
we can get the minimum solution of �∗(Z) as:

Z∗ = (I + S + μK−1)−1(SI). (11)

In order to facilitate data processing and accelerate the
speed of seeking the optimal solution, we convert the result
obtained by (11) to Z∗ → Z̄∗, where Z̄∗ is Z∗ through
linear scaling to [0,1]. The entire data transductive warping
can be expressed as �K : X → R

n, xi → Z̄∗(i, ·)T , for
i = 1, ..., n, Z̄∗(i, ·)T refers to the ith row vector of Z̄∗.

In the transductive warping, we use the graph kernel
principle on the Hilbert space. The advantages include: (1) it
is suitable for high-dimension space, and (2) there is no need
to reduce the data dimension that may lead to information
loss. Then, the data in the new space can be clustered
according to spectral clustering.

We further use spectral clustering to reduce the
dimensionality of the data from R

n to a lower-dimensional
space, which is equal to the number of clusters (including
noise clusters). Assuming there are k clusters, we need
to convert Z̄∗ → R

k . Let L̂ represent the normalized
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graph Laplacian in the R
n space, then the eigensystem of

L̂ is {(ti , ζi)|i = 1, ..., n}, where ζ1 ≤ ... ≤ ζn, T =
[t1, ..., tk] ∈ R

n×k is the first k smallest eigenvectors of L̂,
each row of T is normalized to get T̄ = [t̄ij ]n×k , where

t̄ij = tij /(
k∑

j=1
t2
ij )

1/2, 1 ≤ i ≤ n. Let ŷi ∈ R
k be the vector

corresponding to the ith row of T̄ , then �
L̂

: Z̄∗ → R
k ,

Z̄∗(i, ·)T → ŷi .
Based on these, we develop a new algorithm for robust

semi-supervised spectral clustering, shown as Algorithm 1.
It formally describes the use of supervised information on
semi-supervised data to complete robust spectral clustering
through data transductive warping. Steps 1-2 and Steps
5-6 use p-nearest neighbor to get the normalized graph
Laplacian. The former aims to construct the graph kernel
K , and the latter is to complete spectral clustering. Step
4 shows the data Z̄∗ in the new space. Steps 7-8 get the
eigenvectors of the first k normalized graph Laplacians L̂

and normalize them. Step 9 is to perform k-means clustering
on the eigenvectors.

3.4 Algorithmic discussion

On optimal solution, the second derivative of (7) is

∂
∂�∗(Z)

∂Z

∂Z
= 2I + 2S + 2μK−1. (12)

For K−1 = L̄ is a positive definite matrix, so det (2I +2S+
2μK−1) > 0. It means (7) is strictly convex for Z, and there
is only one global optimal solution. Thus, our algorithm can
converge to a global minimum, and the calculation is very
efficient.

On required parameters analysis, there are three parame-
ters in Algorithm 1. For clusters k, we set it to the number
of clusters in clean data plus noise clusters. Parameter μ,
which controls the trade-off of the entire loss function (7),
is a positive regularization parameter for our new algorithm.
Parameter p, which determines the number of neighbors,
the optimal value is different for different datasets. More
details of the analysis of these parameters will be explained
in Section 4.3.

On the time complexity of Algorithm 1, the most time-
consuming steps are Step 4 and Step 7. Specifically, step 4
finds the inverse matrix, and the time complexity is O(n3).
Step 7 calculates the eigenvector of the matrix, and the time
complexity is also O(n3). Therefore, the time complexity of
RSSC is O(n3).

4 Experiments

In this section, we first introduce the experimental setup
and evaluation metrics. Then, we analyze the parameters
and the robustness under different noise ratios. Next, we
compare RSSC with several state-of-the-art methods on
sixteen different types of datasets. Meanwhile, we use some
graphs to illustrate the effect of RSSC and its competing
algorithms visually. Finally, we present the statistical testing
on the comparison results.

4.1 Experimental setup

Datasets descriptions. We conducted experiments on ten
UCI datasets ,two image datasets (USPS and MNIST)
and two text datasets (Re0 and Oh0) [27], where datasets
Vertebral Column, Parkinson’s Disease Classification, and
Pendigits-test are abbreviated as VC, PDC, and Pt,
respectively. Simulating noise data on image and text data
sets is described as follows:

– USPS-01: randomly select 500 instances from the
numbers “0” and “1” as the clean dataset, and randomly
choose 240 instances from digits “2”-“9” (30 per digit)
as the noise data.
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– MNIST-0: randomly select 900 instances from the
number “0” in MMIST-10K as the clean dataset, and
randomly choose 270 instances from “1”-“9” (30 for
each) as the noise data.

– MNIST-012: randomly select 500 instances from
numbers “0”-“2” in MMIST-10K as the clean dataset,
and randomly choose 210 instances from “3”-“9” (30
for each) as the noise data.

– MNIST-0123: randomly select 500 instances from
numbers “0”-“3” in MMIST-10K as the clean dataset,
and randomly choose 300 instances from “4”-“9” (50
for each) as the noise data.

– Re0: select the instances labeled “interest”, “trade”, and
“money” from Re0 as the clean dataset, and randomly
select 100 instances (10 for each rest label) as the noise
data.

– Oh0: select the instances labeled “Ethics”, “Fundus-
Oculi”, “England” and “Heart-Valve-Prosthesis” from
Oh0 as the clean dataset, and randomly select 120
instances (20 for each rest label) as the noise.

Table 1 shows the details of these datasets used in the
experiments.

Competing algorithms. To verify the robustness of our
new proposed algorithm, we compare RSSC with the
following algorithms:

– WECR k-means [16]: a method that uses weighted
consensus of random k-Means ensemble to con-
struct an adaptive robust semi-supervised clustering
framework.

Table 1 Real-world datasets

Index Datasets Samples Features Clusters

1 iris 150 4 3

2 wine 178 13 3

3 plrx 182 13 2

4 seeds 210 7 3

5 VC 310 6 3

6 wdbc 569 32 2

7 PDC 756 754 2

8 banknote 1372 5 2

9 yeast 1484 8 10

10 Pt 3498 16 10

11 USPS-01 1240 256 3

12 MNIST-0 1170 784 2

13 MNIST-012 1710 784 4

14 MNIST-0123 2300 784 5

15 Re0 1246 2886 4

16 Oh0 746 3182 5

– RSEC [35]: a low-rank representation (LRR) based
method to perform spectral clustering and can deal
with noise.

– SSSC [21]: a semi-supervised spectral clustering
method which is consistent with both labelled and
unlabelled data.

– PCPSNMF [41]: a symmetric NMF-based semi-
supervised clustering method that uses supervised
information to construct a superior affinity matrix.

– RSC [7]: this method uses sparse and latent
decomposition of the similarity graph in spectral
clustering to adapt to noisy data.

– SC,k-means: the basic Spectral Clustering and k-
means algorithms.

Algorithm settings. All methods are executed in the
PYTHON environment. SSSC, PCPSNMF, and RSEC
are implemented by ourselves since the original authors
did not provide the PYTHON source codes. All the
experiments are repeated ten times to obtain the mean
and standard deviation of clustering results. In the whole
experiment, 10% of the instances are randomly selected
as the labeled data. Meanwhile, we added 40% uniformly
distributed noise into the UCI datasets to simulate
the target noise datasets. We generate 0.4*ñ uniformly
distributed noises in the interval [a, b], where a, b means
the noise generated in this interval covers as clean data as
possible, and ñ represents the number of instances in the
original dataset.

All the parameter settings of comparison algorithms are
consistent with the values given in the original papers. For
WECR k-means, 100 base partitions are generated for each
cluster ensemble, the hyperparameter γ is tuned in [0, 1]
with 0.1 as the step size, and generate 0.5N constraints
(N is the number of instances). For RSEC, we set r =
100 as the basic partitions, λ1 = 0.1, λ2 = 0.01, ρ =
1.3, μmax = 1010, ε = 10−7 as the values used in
[35]. For SSSC, similarity matrices wij are computed with
a Gaussian kernel function: wij = exp(‖xi − xj‖2/p),
where p is the dimension of data vectors. For PCPSNMF,
we set tradeoff parameter μ = 0.5, penalty parameter
α = 1, maximum iteration number I ter = 500, 10%
label information for each class was randomly chosen to
generate constraints as supervised information. In the p-
nearest neighbors similarity matrices, we set p = 4, σ =
2. For RSC, we construct nearest neighbor graphs with
k = 15 neighbors, allowing half of the edges m = 0.5 to
be removed per node, and set iteration number equals 50.
For SC, use the method that is implemented in the sklearn
library. In RSSC, two parameters are involved, according to
the discussion in Section 4.3, the value of p is in the range
of [7, 15] or [30, 35], μ = 50. For each method and dataset,
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we run the experiment 10 times and reported average and
standard deviation results in the experiments.

4.2 Evaluationmetrics

There are many clustering indicators, such as NMI,
ACC, FMI, DI, and DBI [3, 22]. In this paper, we
use Normalized Mutual Information (NMI) and Average
Clustering Accuracy (ACC) for two reasons: (1) both
metrics are the most common and frequently used clustering
indicators; (2) for the datasets we used in experiments, the
true labels are known in advance. Thus, with these two
metrics, the performance of the clustering algorithm can be
more clearly reflected. The range of NMI and ACC is [0,1].

NMI measures the mutual information entropy between
resulted labels and the ground-truth labels. Given two sets
of clusters H and H ,

NMI =
∑

h∈H,h∈H p(h, h)log(
p(h,h)

p(h)p(h)
)

√∑
h∈H p(h)log(

p(h)
n

)

√∑
h∈H p(h)log(

p(h)
n

)

,

(13)

where p(h) and p(h) represent the marginal probability
distribution functions of H and H , respectively, induced
from the joint distribution p(h, h) of H and H , and n is the
number of samples.

ACC discovers the one-to-one relationship between
clusters and classes.

ACC =
∑n

i=1 δ(yi, map(li))

n
, (14)

where li and yi are the clustering result and the ground truth
cluster label, respectively, and n is the number of samples.
δ(a, b) equals one if and only if a = b, otherwise it is zero.
map() is the permutation mapping function that maps each
cluster index to a true class label.

4.3 Parameter analysis

In RSSC, two parameters are involved: (1) p, which
determines the number of neighbors; (2) μ, which controls
the trade-off of the entire loss function.

Since p is the number of neighbors of a sample, the
feasible value of p should be different for different datasets.
According to Table 1, we test the range of p from 5 to 100
with steps 3. μ is the regularization parameter and controls
the balance of loss function (7). Thus, μ > 0, and the value
of μ should not be too large. We test the range of μ from
0 to 200 with steps 5. Due to space constraints, Fig. 3 only
depicts the effect of these two parameters on the clustering
performance (ACC and NMI) on datasets iris, seeds, and
VC, where “mu” represents the parameter μ.

As shown in Fig. 3, for a fixed value of p, the fluctuations
of ACC and NMI on these three datasets are small in cases
of different values of μ. Especially on dataset seed, with
the same value of p, different values of μ almost achieve
the same performance. Thus, μ is not very sensitive for
RSSC. In the following experiments, we set μ = 50 as an
experience value. With a fixed value of μ, different values
of p greatly influence the performance of ACC and NMI.
For different datasets, the number of instances varies from
each other. Thus, it is not easy to specify a fixed value of p

optimal for all different datasets. In general, a smaller value
of p([7, 35]) can achieve better performance on these three
datasets. Besides, we have done parameter analysis on all
the other datasets to observe the optimal range of parameter
p. In total, RSSC can perform better when the value of p is
in the range of [7, 15] or [30, 35].

4.4 Robustness assessment

In this part, we verify the robustness of RSSC by adding
different proportions of noise into real-world UCI datasets
and applying all the competing algorithms on these new
noisy datasets. If the noise is far away from the clean data,
such noise is easy to be detected. Thus, we add noise that
surrounds the clean data and covers the clean data.

Let r denote different proportions of noise. The value
of r is from 0 to 1 with step 0.1. Let ñ represent the
number of instances of the UCI original datasets, then
ñ × r represents the number of noisy that need to be
generated. Uniformly distributed noise is randomly added
into the original datasets to form new noisy datasets. Due
to the limitation of pages, we only display the robustness
comparison of these eight competing algorithms on datasets
iris, seeds, and VC, as shown in Fig. 4.

When the noise ratios are relatively small, for example,
r < 0.2, RSSC is slightly worse than other algorithms on
ACC or NMI. However, with the increase of noise ratios
(r ≥ 0.2), RSSC performs better than others and gets
the best NMI and ACC on these three datasets. No matter
whether the trend is upward or downward, other comparison
algorithms are consistently below the RSSC. Similar results
can be obtained on the other seven datasets. Thus, RSSC
can always get higher performance than these competing
algorithms when the noise ratios are large enough (r ≥ 0.2).
These results demonstrate that RSSC is robust and can
achieve excellent clustering performance on noisy datasets,
even though noisy is relatively large.

For RSSC, after mapping the original instances into new
data space, the labeled data will be close to the canonical
coordinate system, and the clean unlabeled data will be
close to the labeled data with similar characteristics. Thus,
the instances of the same cluster are closer to each other.
RSSC uses p-nearest neighbors to construct a similarity
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Fig. 3 The parameters analysis of p and μ on datasets iris, seeds, and VC

Fig. 4 Robustness comparison of eight competing algorithms on datasets iris, seeds and VC
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matrix on the noise datasets. When the noise increase, the
p neighbors of a specific noise instance are almost all noise
points. Therefore, RSSC can perform well with the increase
of noise. We choose r = 0.4 in the next experiments. In
other words, in the following experiments, we add 40%
noise into the clean datasets.

4.5 RSSC vs. its competing algorithms

In this section, we compare RSSC and its competing
algorithms on sixteen datasets. Tables 2 and 3 show the
NMI and ACC of these competing algorithms, while Table 4
shows their running time. Bold entries stand for the best-
obtained score for their specific category.

To validate whether RSSC and its rivals have a significant
difference in clustering performance, we conduct the
Friedman test at a 95% significance level, under the null-
hypothesis [8]. The performance of RSSC and that of its
rivals has no significant difference if the null-hypothesis
is accepted. If the null-hypothesis at the Friedman test is
rejected, we proceed with the Nemenyi test as a post-hoc
test. The p-value of Friedman test on NMI and ACC is
3.7971e-12 and 1.7098e-12, respectively. Therefore, there is
a significant difference between these competing algorithms
in cases of NMI and ACC. According to the Nemenyi test,
the value of CD(critical difference) is 2.6249.

Table 5 shows the ranking of different algorithms in
the evaluation results of NMI and ACC. A smaller value
of ranks indicates a better performance of the algorithm.
According to the rank-values of algorithms in Table 5,
RSSC has the best performance in both cases of NMI and

ACC. Meanwhile, Fig. 5 shows the Friedman test graphs
of these eight competing algorithms in cases of NMI and
ACC. Specifically, Fig. 5a shows no overlap between the
horizontal line segments of RSSC and other competing
algorithms, except RSC. Thus, RSSC is significantly better
than WECR k-means, RSEC, SSSC, PCPSNMF, SC, k-
means in the case of NMI. From Fig. 5b, RSSC is
significantly better than other competing algorithms in the
case of ACC, except RSC.

From Tables 2–5 and Fig. 5, we can draw:

– RSSC vs. WECR k-means: RSSC performs better than
WECR k-means. On the average values of NMI and
ACC, RSSC is 30.1% and 35.34% higher than WECR
k-means, respectively. WECR k-means first samples
multiple times from the original dataset and then uses
k-means to generate cluster ensemble. Thus, WECR
k-means must determine a cluster center for each
cluster in advance, and these cluster centers determine
the quality of the final clustering performance. When
noise is considerable, the original label constraints will
gradually change, and the clustering performance of
WECR k-means will decrease. Instead, RSSC only uses
label data to generate the matrix without constraints.
Therefore, even if the noise increases, the method of
forming the label matrix will not change, which leads
to the robustness of RSSC.

– RSSC vs. RSEC: RSSC performs better than RSEC
on all these datasets in both cases of NMI and
ACC. On wine, seeds, and PDC, the NMI and
ACC values of RSSC are at least 20% higher

Table 2 Clustering performance on sixteen datasets by NMI

Datasets RSSC WECR k-means RSEC SSSC PCPSNMF RSC SC k-means

iris 0.7846 ± 0.01 0.3783 ± 0.03 0.3961 ± 0.05 0.6306 ± 0.05 0.5205 ± 0.02 0.7752 ± 0.02 0.6901 ± 0.03 0.6278 ± 0.02

wine 0.6822 ± 0.00 0.5353 ± 0.02 0.4898 ± 0.07 0.5991 ± 0.00 0.5979 ± 0.03 0.6079 ± 0.09 0.6339 ± 0.00 0.5784 ± 0.03

plrx 0.4074 ± 0.03 0.0164 ± 0.00 0.0672 ± 0.05 0.0073 ± 0.00 0.0129 ± 0.01 0.0040 ± 0.00 0.0151 ± 0.01 0.0774 ± 0.00

seeds 0.8228 ± 0.00 0.3063 ± 0.02 0.4242 ± 0.04 0.5695 ± 0.03 0.5232 ± 0.00 0.8005 ± 0.00 0.6981 ± 0.01 0.7007 ± 0.01

VC 0.6038 ± 0.01 0.1477 ± 0.01 0.4561 ± 0.10 0.0180 ± 0.00 0.3117 ± 0.02 0.5281 ± 0.03 0.4291 ± 0.02 0.4165 ± 0.02

wdbc 0.7411 ± 0.00 0.4427 ± 0.01 0.4653 ± 0.09 0.4021 ± 0.00 0.4674 ± 0.01 0.7386 ± 0.00 0.7132 ± 0.00 0.6511 ± 0.01

PDC 0.6751 ± 0.01 0.3852 ± 0.00 0.4619 ± 0.04 0.4264 ± 0.00 0.4406 ± 0.00 0.5273 ± 0.11 0.0149 ± 0.00 0.3143 ± 0.01

banknote 0.3713 ± 0.02 0.0176 ± 0.00 0.2632 ± 0.08 0.0031 ± 0.00 0.1511 ± 0.00 0.2999 ± 0.08 0.1381 ± 0.01 0.1486 ± 0.01

yeast 0.4431 ± 0.01 0.3202 ± 0.00 0.4198 ± 0.01 0.3399 ± 0.01 0.3224 ± 0.04 0.4127 ± 0.01 0.3775 ± 0.01 0.3134 ± 0.02

Pt 0.7328 ± 0.01 0.4789 ± 0.00 0.7244 ± 0.02 0.5100 ± 0.00 0.5651 ± 0.02 0.6885 ± 0.01 0.5925 ± 0.00 0.5361 ± 0.01

USPS-01 0.7709 ± 0.02 0.3650 ± 0.01 0.6482 ± 0.04 0.6825 ± 0.02 0.5206 ± 0.02 0.6423 ± 0.00 0.5161 ± 0.01 0.5982 ± 0.00

MNIST-0 0.5947 ± 0.05 0.2819 ± 0.00 0.3305 ± 0.04 0.3031 ± 0.00 0.3111 ± 0.01 0.3828 ± 0.01 0.3607 ± 0.01 0.2903 ± 0.01

MNIST-012 0.6954 ± 0.00 0.4570 ± 0.01 0.7099 ± 0.01 0.4161 ± 0.00 0.4215 ± 0.03 0.6431 ± 0.01 0.4838 ± 0.03 0.5186 ± 0.03

MNIST-0123 0.7243 ± 0.01 0.4758 ± 0.00 0.7237 ± 0.01 0.4022 ± 0.19 0.5028 ± 0.02 0.6916 ± 0.00 0.4792 ± 0.02 0.4698 ± 0.00

Re0 0.4383 ± 0.01 0.3584 ± 0.03 0.2979 ± 0.02 0.3122 ± 0.02 0.2508 ± 0.00 0.2745 ± 0.11 0.2435 ± 0.01 0.2109 ± 0.02

Oh0 0.5443 ± 0.02 0.3561 ± 0.02 0.5361 ± 0.04 0.4983 ± 0.00 0.3076 ± 0.02 0.5277 ± 0.02 0.2002 ± 0.02 0.2773 ± 0.02

AVG. 0.6374 0.3327 0.4643 0.3825 0.3892 0.5340 0.4116 0.4206
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Table 3 Clustering performance on sixteen datasets by ACC

Datasets RSSC WECR k-means RSEC SSSC PCPSNMF RSC SC k-means

iris 0.8838 ± 0.01 0.5524 ± 0.02 0.5552 ± 0.02 0.5848 ± 0.04 0.5976 ± 0.01 0.8810 ± 0.01 0.6190 ± 0.02 0.5405 ± 0.02

wine 0.8024 ± 0.00 0.5608 ± 0.03 0.4880 ± 0.06 0.5824 ± 0.00 0.5880 ± 0.02 0.7296 ± 0.07 0.7000 ± 0.00 0.6880 ± 0.02

plrx 0.6431 ± 0.02 0.3945 ± 0.01 0.5153 ± 0.06 0.4008 ± 0.01 0.4353 ± 0.00 0.3145 ± 0.02 0.3984 ± 0.03 0.3492 ± 0.00

seeds 0.9088 ± 0.00 0.5517 ± 0.02 0.5633 ± 0.04 0.5122 ± 0.01 0.6333 ± 0.00 0.9014 ± 0.00 0.6361 ± 0.01 0.6156 ± 0.01

VC 0.6700 ± 0.04 0.4009 ± 0.01 0.6553 ± 0.06 0.3406 ± 0.00 0.5572 ± 0.03 0.6005 ± 0.02 0.6083 ± 0.03 0.5729 ± 0.02

wdbc 0.8758 ± 0.00 0.4289 ± 0.01 0.7222 ± 0.05 0.4504 ± 0.00 0.5614 ± 0.01 0.8733 ± 0.00 0.8607 ± 0.00 0.8494 ± 0.00

PDC 0.8272 ± 0.00 0.4493 ± 0.02 0.5575 ± 0.04 0.5335 ± 0.00 0.5218 ± 0.04 0.5330 ± 0.04 0.5250 ± 0.00 0.5429 ± 0.00

banknote 0.6974 ± 0.02 0.3953 ± 0.01 0.5997 ± 0.06 0.3974 ± 0.00 0.5483 ± 0.03 0.5838 ± 0.03 0.5171 ± 0.01 0.5419 ± 0.01

yeast 0.5372 ± 0.01 0.2088 ± 0.00 0.3695 ± 0.02 0.3007 ± 0.00 0.3381 ± 0.05 0.5017 ± 0.01 0.2930 ± 0.01 0.2964 ± 0.02

Pt 0.7989 ± 0.01 0.1688 ± 0.01 0.7428 ± 0.05 0.2881 ± 0.00 0.4119 ± 0.02 0.6963 ± 0.02 0.5755 ± 0.01 0.4323 ± 0.02

USPS-01 0.9019 ± 0.02 0.6740 ± 0.02 0.7503 ± 0.10 0.8655 ± 0.01 0.6613 ± 0.01 0.6371 ± 0.00 0.6668 ± 0.02 0.7919 ± 0.00

MNIST-0 0.9320 ± 0.02 0.6598 ± 0.01 0.5884 ± 0.05 0.7694 ± 0.00 0.7068 ± 0.02 0.8342 ± 0.01 0.7916 ± 0.01 0.7350 ± 0.00

MNIST-012 0.7537 ± 0.02 0.6759 ± 0.01 0.7335 ± 0.00 0.2936 ± 0.00 0.5678 ± 0.04 0.7292 ± 0.01 0.6587 ± 0.01 0.6402 ± 0.01

MNIST-0123 0.7676 ± 0.01 0.6900 ± 0.00 0.7506 ± 0.01 0.2183 ± 0.00 0.6209 ± 0.03 0.7378 ± 0.00 0.6423 ± 0.02 0.6687 ± 0.03

Re0 0.5083 ± 0.01 0.5265 ± 0.02 0.3700 ± 0.12 0.3671 ± 0.01 0.2673 ± 0.02 0.4181 ± 0.01 0.2673 ± 0.03 0.4711 ± 0.01

Oh0 0.5247 ± 0.02 0.3874 ± 0.03 0.5114 ± 0.02 0.3820 ± 0.02 0.2239 ± 0.30 0.4397 ± 0.00 0.2239 ± 0.02 0.4048 ± 0.03

AVG. 0.7520 0.4828 0.5920 0.4554 0.5150 0.6527 0.5488 0.5713

than that of RSEC. RSEC jointly learns a robust
representation for the co-association matrix through
low-rank constraint and finds the final partition in a
unified optimization framework. However, RSEC needs
to solve n optimization sub-problems on n data points.
The eigenvector is updated through each iteration by
the Singular Value Thresholding (SVT) operator, and
the clustering results are affected by the increase in

the number of iterations. By contrast, RSSC does not
require iterative operations and only runs once. It is
evident from Table 4 that RSSC is much faster than
RSEC on running time.

– RSSC vs. SSSC: RSSC gets much higher performance
than SSSC on these datasets in both cases of NMI and
ACC. SSSC is a semi-supervised spectral clustering
method consistent with labeled and unlabeled data

Table 4 Run Time(sec.) of all the compared methods on sixteen datasets

Datasets RSSC WECR k-means RSEC SSSC PCPSNMF RSC SC k-means

iris 0.0845 0.2423 13.0595 0.9545 0.9005 0.0611 0.0278 0.2621

wine 0.0975 0.2810 14.1015 1.0508 0.9711 0.0658 0.0253 0.0206

plrx 0.1259 0.1948 15.4322 0.9202 1.2904 0.0555 0.0315 0.0222

seeds 0.1461 0.2609 14.6580 1.0806 1.6806 0.0722 0.0347 0.0221

VC 0.3285 0.2080 17.1694 1.3292 7.7209 0.0694 0.0426 0.0266

wdbc 1.1120 0.3558 24.5812 1.9540 24.8306 0.7490 0.0824 0.0303

PDC 0.3285 1.4644 17.1694 6.7739 50.4626 0.0694 0.0426 0.0854

banknote 10.1039 2.3363 66.7948 6.1065 244.8491 0.7419 0.3840 0.0523

yeast 14.8369 4.3403 83.7529 8.3654 265.2536 0.4008 0.6299 0.1501

Pt 180.6484 40.4137 514.9024 30.7948 1549.6428 1.1341 2.6991 0.1369

USPS-01 3.8348 4.3563 64.6003 12.9925 70.5237 0.6907 0.1770 0.0521

MNIST-0 4.7833 2.8742 138.6816 14.5841 63.8813 1.5594 0.1823 0.0967

MNIST-012 10.8649 5.5957 270.9705 0.0001 148.2582 2.6832 0.3666 0.1636

MNIST-0123 30.0945 8.8905 397.9122 71.1581 285.1119 6.7335 0.9323 0.3181

Re0 8.3742 3.7885 623.9524 217.3313 718.6201 5.4825 0.3426 0.6812

Oh0 3.1334 2.4154 380.0712 75.5827 252.5800 2.3633 0.1920 0.5388

AVG. 16.9285 5.4532 169.5826 45.6217 230.4111 1.5135 0.3970 0.1662
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Table 5 The ranks of these competing algorithms by NMI and ACC

Datasets RSSC RSEC WECR k-means SSSC PCPSNMF RSC SC k-means

NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

iris 1 1 7 6 8 7 4 5 6 4 2 2 3 3 5 8

wine 1 1 8 8 7 7 4 6 5 5 3 2 2 3 6 4

plrx 1 1 3 2 4 6 7 4 6 3 8 8 5 5 2 7

seeds 1 1 7 6 8 7 5 8 6 4 2 2 4 3 3 5

VC 1 1 3 2 7 7 8 8 6 6 2 4 4 3 5 5

wdbc 1 1 5 5 6 8 7 7 5 6 2 2 4 3 3 4

PDC 1 1 3 2 6 8 5 5 4 7 2 4 7 6 8 3

banknote 1 1 3 2 7 8 8 7 4 4 2 3 6 6 5 5

yeast 1 1 2 3 7 8 5 5 6 4 3 2 4 7 8 6

Pt 1 1 2 2 8 8 7 7 5 6 3 3 4 4 6 5

USPS-01 1 1 3 4 8 5 2 2 6 7 4 8 7 6 5 3

MNIST-0 1 1 5 8 8 7 6 4 4 6 2 2 3 3 7 5

MNIST-012 2 1 1 2 6 4 8 8 7 7 3 3 5 5 4 6

MNIST-0123 1 1 2 2 6 4 7 8 4 7 3 3 5 6 8 5

Re0 1 2 4 5 2 1 3 6 6 7 5 4 7 8 8 3

Oh0 1 1 2 2 5 5 4 6 6 8 3 3 8 7 7 4

AVG. RANK 1.0625 1.0625 3.7500 3.8125 6.4375 6.2500 5.6250 6.0000 5.3750 5.6875 3.0625 3.4375 4.8750 4.8750 5.6250 4.8750

that can perform well on clean datasets. However,
SSSC does not consider noise, and it performs worse
on these noise datasets. Thus, removing noise in the
clustering process is necessary because these noise
data can significantly influence performance. Besides,
SSSC uses a fully connected undirected weighted graph
when constructing the similarity matrix. Thus, SSSC
spends more time than RSSC, which uses the p-nearest
neighbor graph to construct the similarity matrix.

– RSSC vs. PCPSNMF: RSSC performs better than PCP-
SNMF in both cases of NMI and ACC. PCPSNMF
is a symmetric NMF-based semi-supervised clustering
method that took advantage of the supervisory infor-

mation by using them to construct a superior affin-
ity matrix. However, PCPSNMF is not robust to noise.
On noise datasets, the similarity matrice structure of
PCPSNMF will be destroyed by noise, thereby affect-
ing the assignment matrix’s generation. In addition, the
iterative calculation of PCPSNMF makes the running
time much longer than RSSC. Therefore, anti-noise
processing for semi-supervised clustering is necessary.

– RSSC vs. RSC: RSSC outperforms RSC on ten of
sixteen datasets in both cases of NMI and ACC. On
plrx and PDC, the NMI and ACC values of RSSC
are at least 26% higher than RSC. RSC uses a sparse
and latent decomposition of the similarity graph during

Fig. 5 Statistical test graphs of these eight competing algorithms in cases of NMI and ACC

1 3

P. Zhou et al.1266



spectral clustering. Meanwhile, RSC requires each local
node to have a minimum degree in each iteration and
calculates truncated eigendecomposition that affects the
final clustering performances. In contrast, RSSC acts
on the entire dataset and has only one global minimum
solution. On running time, RSC is faster than RSSC.
RSSC has a matrix inversion process, while RSC uses
the potential decomposition of the similarity graph to
separate the clean dataset from the noise.

– RSSC vs. SC, k-means: Compared with the basic
clustering algorithm, RSSC increased 22.58% and
20.32% than SC on the average of NMI and ACC,

respectively. Meanwhile, RSSC increased 21.68% and
18.03% respectively than k-means. SC and k-means
are sensitive to noise, leading to a significant decrease
in clustering performance. SC and k-means are much
faster on running time than RSSC due to their
simplicity.

In summary, RSSC performs much better than its
competing algorithms on these noise datasets in both cases
of NMI and ACC. The experimental results thoroughly
verify our new algorithm’s effectiveness and the necessary
of anti-noise processing for semi-supervised clustering.

Fig. 6 The clustering results of RSSC and other seven algorithms on the noisy dataset seeds
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4.6 Graphical display

In this part, to visually present the results of these competing
algorithms, we offer the effect diagrams of these eight
algorithms on two datasets: seeds and wdbc. The clustering
results are presented in a two-dimensional form, as shown in
Figs. 6a and 7a, where the red dots represent the 40% added
noise, and the other colors (black, green, and blue) represent
the correct clustering results of the clean data.

RSSC and the other seven competing algorithms are
clustered on the same two noise datasets, where Figs. 6a
and 7a are the correct clustering results. It can be seen

intuitively from Figs. 6 and 7 that RSSC is the closest
to the correct clustering results. These figures intuitively
demonstrate the effectiveness and robustness of the RSSC
algorithm.

5 Conclusions

This paper proposes a novel algorithm (RSSC) to achieve
robust clustering on semi-supervised datasets. In terms of
transductive warping, RSSC can make full use of label
information to guide those unlabeled data in the same

Fig. 7 The clustering results of RSSC and other seven algorithms on the noisy dataset wdbc
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cluster to close it. Meanwhile, for the noisy data that has
no label guidance, they will form noise clusters. RSSC can
simultaneously identify noise and complete data clustering
tasks even for high noise ratio datasets. Meanwhile, RSSC
constructs a convex objective function that can obtain the
optimal global solution. Extensive experiments verify the
effectiveness and robustness of RSSC. The limitation of
RSSC is that the number of clusters needs to be manually
defined, and sometimes it may be more troublesome if we
do not know how many clusters in advance. Besides, with
the rapid increase in data volume, algorithms in batch mode
can no longer meet time and space complexity requirements.
Thus, our future work will focus on cluster analysis for
online streaming data.
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