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Feature selection aims to choose the most relevant features from the dataset that can enhance 
the performance and efficiency of machine learning models. Although feature selection has been 
studied for many years, most existing methods focus on accuracy and efficiency while neglecting 
the interpretability of selected features. Therefore, inspired by the “Yin-Yang” philosophy, we 
introduce the concept of feature polarity for the first time and divide the features into positive 
and negative features. For example, by analyzing a patient’s symptoms (features), we can obtain 
two sets of features to explain whether the patient has the flu. Positive features help us determine 
if the patient has the flu, while negative features can help us rule out the possibility of the flu. 
We introduce the PN (Positive and Negative) coefficient to measure the polarity of candidate 
features and develop a novel and explainable feature selection method based on feature polarity. 
Furthermore, we propose an ensemble classification framework that leverages both positive and 
negative features for each class to improve classification performance. Extensive experiments 
demonstrate the effectiveness of the PN coefficient compared to other information measurements. 
Moreover, our proposed classification framework performs excellently compared to some state-

of-the-art feature selection methods.

1. Introduction

Feature selection is a critical task in data mining which aids in selecting the most relevant features from a dataset to enhance the 
performance and efficiency of machine learning models [28]. Feature selection lies in reducing data dimensionality, lowering model 
complexity, avoiding overfitting, and improving model generalization ability, thereby achieving better performance, less running 
time, and better interpretability [38]. For example, feature selection can improve classifier accuracy in classification tasks, reduce 
misjudgment and omission rates, and improve classification effectiveness and efficiency [4].

Generally, feature selection methods include filter, wrapper, and embedded [28]. Filter-based methods independently evaluate 
and select features before model training, with commonly used evaluation metrics including information gain, mutual information 
[43], etc. Wrapper-based methods combine feature selection and model training, evaluating the importance of features through 
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Fig. 1. An example to illustrate the feature polarity. By analyzing and interpreting the symptoms or features of a patient, we obtain two sets of features to explain 
whether the patient has the flu. The green features (positive features) help determine the patient has the flu, while the red features (negative features) can help us 
rule out the possibility of the patient having the flu.

different strategies [30]. Embedded methods integrate feature selection and model training, such as constraining model parameters 
through regularization methods while selecting the optimal feature subset [29]. In recent years, ensemble feature selection methods 
have emerged as a new trend [8]. Their advantage lies in combining different feature selection algorithms and strategies, leveraging 
the strengths of different algorithms, and reducing uncertainty in feature selection. In addition, ensemble methods can improve 
stability to a certain extent, but the specific effect may depend on the choice of algorithms and the characteristics of the domain. 
This has practical implications for researchers and practitioners, as it can help them better understand and apply ensemble feature 
selection methods [36]. Ensemble feature selection methods also have played an essential role in robust biomarker identification for 
cancer diagnosis, especially in high-dimensional data analysis and microarray data classification [9]. Employing ensemble feature 
selection techniques can significantly enhance the robustness of classifiers in biomarker discovery and improve classification perfor-

mance simultaneously [2]. The study of feature selection has spanned several decades, and numerous methods have been proposed. 
However, existing feature selection methods primarily focus on issues such as accuracy, efficiency, scalability, while neglecting the 
interpretability of features.

Due to the extensive development and application of machine learning technology, explainable machine learning has received 
increasing attention [31]. An explainable system is a model that enables a user to observe and study the mathematical transformation 
of input data into output data to understand how the system works [41]. Entrusting essential decisions to a system that cannot explain 
itself will bring unpredictable risks [34]. In feature selection tasks, the interpretability of features holds immense importance. Firstly, 
it allows us to understand the model’s prediction results, enabling us to evaluate its credibility. Moreover, feature interpretability is 
essential for comprehending the working mechanism of the model. In domains like healthcare, it enables doctors to grasp the logic 
behind the model’s diagnosis, thereby enhancing guidance in clinical practice. Therefore, the comprehensibility of features plays a 
pivotal role in model credibility. It enables us to gain a deeper insight into the model and utilize it effectively to enhance both its 
efficiency and performance [7].

Inspired by the “Yin-Yang” philosophy in China and the work of Ribeiro et al. [37], we believe that features can also be divided 
into “Yin” and “Yang” categories. Specifically, a positive feature (polarity “Yang”) indicates that the feature contributed to a specific 
model prediction result for a specific label. In contrast, the negative feature (polarity “Yin”) indicates that the feature denies a specific 
model prediction result. Feature polarity helps us understand the degree and direction of the impact of features on model prediction 
results, thereby better carrying out feature selection and optimization. Fig. 1 is an example to illustrate the feature polarity. A series 
of symptoms can be identified through examination for a patient, including sneezing, fever, headache, fatigue, and dyspnea. By 
analyzing and interpreting the features of a patient, we can obtain two sets of features. The green features (positive features) help 
determine the patient has the flu, while the red features (negative features) can help us rule out the possibility of the patient having 
the flu (We do not know what disease he had, but it was not the flu). Feature selection can be more interpretable by analyzing 
both positive and negative features. However, existing feature selection methods rarely consider the polarity of features, resulting in 
feature subsets that may have strong classification effects but lack interpretability.

The motivation and significance of this paper are in three aspects. (1) Although feature selection methods have been studied 
for many years, only few works focus on the interpretability of selected features. Besides accuracy and efficiency, understanding 
the underlying reasons behind selecting specific features can significantly enhance the models’ trustworthiness, transparency, and 
applicability in real-world scenarios. Therefore, this paper aims to propose an explainable feature selection method. (2) This paper 
first gives the formal definition of feature polarity (Positive and Negative features) that is inspired by the Chinese philosophy of 
“Yin-Yang.” By analyzing and selecting positive and negative features, a better understanding of their impact on model prediction 
results can be achieved, thereby enhancing the interpretability of feature selection. (3) Since we select both positive and negative 
features for each class from each dataset, existing classical classifiers can not be applied to obtain the classification performance 
2

directly. Therefore, inspired by the superiority of Ensemble learning, we propose an ensemble classification framework that can 
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enhance the performance by training multiple classifiers. By combining ensemble learning with both positive and negative selected 
features, we can improve classification performance and provide better interpretability.

Motivated by this, we propose the PN coefficient that utilizes the Kendall coefficient [10], which is a non-parametric method 
that is unaffected by data distribution and outliers. To assess the polarity of candidate features in a particular classification, we 
calculate the PN coefficient for these features. This allows us to identify positive and negative features without having to go through 
complex calculations. Furthermore, we propose an ensemble classification framework that employs separate subsets of positive 
and negative features. By training multiple classifiers using different feature subsets, we combine their classification results using 
ensemble strategies. This paper makes the following main contributions:

• Inspired by the “Yin-Yang” philosophy, we first propose the concept of feature polarity and present the formal definition of 
positive and negative features. The feature polarity can enhance human understanding and increase the interpretability and 
credibility of the model based on positive and negative features.

• To measure the polarity of features, we propose the PN coefficient, which can distingue the positive and negative features. Then, 
We present a new method for feature selection, founded on the polarity of features. Meanwhile, we design a new strategy to 
determine the proportion of positive and negative features automatically. Besides the performance of the selected features, our 
proposed method can explain them from the polarity perspective.

• Based on the selected positive and negative features, we propose a new ensemble classification framework combining multiple 
classifiers from both positive and negative perspectives to improve classification performance.

• Extensive experiments have been conducted between the PN coefficient and other information measurements to validate the 
effectiveness of both positive and negative features. Meanwhile, our new proposed classification framework indicates good 
performance contrasted to eight state-of-the-art feature selection methods, making it widely applicable in practical applications 
with interpretability.

The rest of this article is organized as follows. Section 2 describes related work. Section 3 presents the proposed method. Section 4

gives the experimental analysis, and Section 5 gives a brief conclusion.

2. Related work

2.1. Feature selection method

Feature selection has been a subject of study for numerous years and has yielded a multitude of impressive algorithms. These 
algorithms are primarily categorized into three groups: Filter, Wrapper, and Embedded methods [28].

2.1.1. Filter methods

Filter feature selection methods are employed to choose highly correlated features. Usually, a specific metric is employed to gauge 
the correlation between features and target variables. For instance, Mahdieh et al. [27] presented a feature selection approach for text 
classification that encompasses the principles of minimum redundancy and maximum relevance. Emrah et al. [19] have introduced 
a novel filtering criterion that departs from employing mutual redundancy and instead focuses on selecting the top-ranked features 
based on ReliefF and Fisher scores. Meanwhile, Zuo et al. [48] have proposed a feature selection technique based on curvature, which 
assesses the significance of each feature by measuring the curvature of the data manifold. By evaluating the curvature of the features 
to determine their importance, the most discriminative features are chosen for classification. Zhang et al. [46] have developed a swift 
feature selection algorithm that employs orthogonal least squares for linear classification. The goal of this algorithm is to improve 
the classification model’s performance by choosing the most relevant features from a provided dataset. He et al. [24] introduced a 
label enhancement algorithm designed to incorporate latent sample correlations into the label enhancement process. Conventional 
discrete labels are transformed into label distributions, enhancing their ability to capture the intricate relationship between samples 
and labels. Furthermore, You et al. [45] proposed an algorithm specialized in learning local causal structures for streaming features 
that aims to handle the dynamic alterations within the feature space. Hashemi et al. [20] proposed a method that models the feature 
selection problem as a multi-criteria decision-making process and solves it using information fusion.

2.1.2. Wrapper methods

Wrapper feature selection methods adopt the feature selection model’s classification accuracy as the machine learning benchmark. 
The fundamental concept is to treat the feature selection issue as an optimization problem for the classifier. This involves assessing 
various feature subsets through iterative training and testing. Specifically, Babak et al. [33] introduced a wrapper feature selection 
algorithm based on the forest optimization approach. This algorithm integrates region selection concepts and reduces classification 
errors in most scenarios. Vasilii et al. [4] developed an innovative semi-supervised wrapper feature selection framework using a 
self-learning algorithm for pseudo-labeling unlabeled samples. This algorithm considers feature weights and progressively eliminates 
irrelevant features. Tarkhane et al. [39] leverage the wrapper technique, incorporating an improved binary differential evolution 
algorithm for feature selection. This method can be implemented during the data preprocessing phase to enhance the performance 
and efficiency of machine learning algorithms. Meanwhile, Liu et al. [30] proposed an accelerated wrapper-based feature selection 
approach that leverages recursive elimination and distributed computing strategies. Thakkar et al. [40] investigated the impact of 
3

various feature selection techniques, such as Chi-Square, Information Gain, and Recursive Feature Elimination, in conjunction with 
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different classifiers on the performance of intrusion detection systems. Guney et al. [16] proposed an algorithm that integrates feature 
selection and classifier optimization for constructing an accurate and efficient network intrusion detection system. This algorithm 
enhances the optimization effectiveness and resolves the interdependency issue between feature selection and classifier optimization 
by incorporating feature selection during the classifier optimization process. Guyon et al. [18] utilized gene expression data obtained 
through DNA microarray technology and proposed a Support Vector Machine (SVM) method based on Recursive Feature Elimination 
(RFE) for selecting a gene subset associated with cancer. They experimentally demonstrated that their method outperformed in 
cancer classification performance and showed biological relevance to cancer.

2.1.3. Embedded methods

Embedded methods in feature selection involve integrating the feature selection process directly into the model, enabling simul-

taneous feature selection and model training. This approach utilizes models with built-in feature selection functions, such as Lasso, 
Ridge, Elastic Net, etc. These models penalize features to achieve the desired feature selection effect. More specifically, R Xu et al. 
[44] have proposed a dynamic feature selection algorithm that utilizes Q-learning to assess the importance of each individual feature, 
enabling the identification and selection of the most pivotal one. In a different study, Hashemi et al. [21] have introduced a highly 
efficient feature selection algorithm, employing a Pareto-based approach, ultimately improving the accuracy of multi-label classifica-

tion models. Nie et al. [32] proposed an unsupervised feature selection framework called Fast Sparse Discriminative K-Means (FSDK) 
to address the issue of continuous pseudo-label matrix deviating from reality in the embedded feature selection process. Guney et 
al. [17] proposed a robust ensemble feature selection (EFS) technique that utilizes a support vector classifier to assign weights to 
features and employs the minimum weight threshold method to handle outliers in the ranked feature lists. This method significantly 
improves gene selection stability while maintaining classification performance and reducing computational complexity.

Ensemble learning is a prolific field in machine learning and has been commonly employed for classification. Ensemble learning 
can also be applied to feature selection. Specifically, [8] provided the reader with the basic concepts necessary to build an ensemble 
for feature selection, reviewing the up-to-date advances and commenting on the future trends still to be faced. Bania et al. [6]

proposed an ensemble feature selection algorithm named R-GEFS based on graph theory and feature rank aggregation to address 
the issue of feature redundancy in the feature selection process. Hashemi et al. [22] proposed an ant colony optimization algorithm, 
Ant-MCDM, based on the multi-criteria decision-making method for solving complex combinatorial optimization problems. The 
algorithm considers multiple heuristic methods as criteria and employs a multi-criteria decision-making approach to select the best 
node. Hashemi et al. [23] proposed an online feature selection algorithm called NSOFS, which models the online feature selection 
process as a multi-objective optimization problem. In this algorithm, the importance of features is measured by a set of multiple 
feature evaluation metrics. By utilizing multi-objective optimization and Pareto dominance, efficient and accurate feature selection 
is achieved.

Most existing feature selection methods aim to select features that are “as good as possible” according to some measurements 
or strategies. However, most existing feature selection algorithms do not consider interpretability. Besides good performance, the 
interpretability of features is also very important for users to trust the constructed model. Therefore, this paper focuses on the issue 
of interpretable feature selection.

2.2. Explainable machine learning

Explainable machine learning refers to the process and techniques used to interpret and comprehend the predictions made by a 
model. The objective is to enhance the trustworthiness and credibility of the model, enabling humans to gain a better understanding 
of its predictions [15]. In certain domains, such as medicine, interpreting the features is vital for accurate diagnosis and effective 
treatment of diseases. Explainable machine learning methods can be classified differently from different perspectives. In this paper, 
the research on explainable machine learning primarily concentrates on the following aspects:

2.2.1. Local interpretability

Local interpretability involves explaining individual predictions and focuses on understanding how the model generates pre-

dictions for specific inputs. By gaining insights into model’s decision-making process, the behavior of the model can be better 
comprehended. For example, Ribeiro et al. [37] present LIME as a method for local interpretability, which can explain the process 
behind predicting outcomes for a single sample.

2.2.2. Global interpretability

Global interpretability seeks to elucidate the entire machine learning model, encompassing more than just individual predictions. 
It focuses on comprehending the structure, parameters, decision-making mechanism of the entire model, as well as the transformation 
and prediction of inputs. Commonly employed techniques for global interpretability encompass feature importance analysis and 
decision tree visualization. For example, Lundberg et al. [42] introduced SHAP as a global interpretability method, which can 
provide insights into how the model obtains predictions for all samples.

2.2.3. Visualization

Visualizing the model’s decision-making process is an effective way for humans to understand its prediction results better. Two 
commonly used methods for this purpose are t-SNE [25] and UMAP [5]. t-SNE is a nonlinear method that enables mapping high-
4

dimensional data to a lower-dimensional space while preserving the local data structure. Similarly, UMAP utilizes manifold learning 
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and stochastic gradient descent to map high-dimensional data points to coordinates in a lower-dimensional space by optimizing an 
objective function.

In general, explainable machine learning is essential to get insight into their internal mechanism. Nevertheless, only a limited 
number of studies emphasize the interpretability of features. Considering the Interpretable feature selection method can help us 
better understand the model’s prediction results, thereby improving the reliability and credibility of feature selection. Therefore, this 
paper focuses on the interpretability of features from the perspective of feature polarity and validates its effectiveness in classification 
tasks. In general, explainable machine learning is essential to get insight into their internal mechanism. Nevertheless, few works focus 
on the interpretability of features by the feature selection methods. Considering the interpretability of features in feature selection 
can help us better understand the model’s prediction results, thereby improving the reliability and credibility of feature selection. 
Therefore, this paper focuses on the interpretability of features from the perspective of feature polarity and validates the effectiveness 
of both positive and negative features.

3. The proposed method

In this part, we first present the formal definition of the PN coefficient and, the positive and negative features. Then, we present 
a case study to illustrate the feature polarity calculation and the features’ interpretability. Based on this, we designed a new feature 
selection method to select positive and negative features while removing redundant features. Besides, we propose a novel ensem-

ble classification framework combining multiple classifiers from both positive and negative perspectives to improve classification 
performance. Finally, the analysis of time complexity of our method is provided.

3.1. The definition of feature polarity

Inspired by the “Yin-Yang” philosophy, we believe that features can also be divided into “Yin” and “Yang” categories. Specifically, 
a positive feature (polarity “Yang”) indicates that the feature contributed to a specific model prediction result for a specific label. 
In contrast, the negative feature (polarity “Yin”) indicates that the feature denies a specific model prediction result. In order to 
determine and measure the polarity of features, we need to define a specific computable measurement.

3.1.1. The Kendall coefficient

Kendall coefficient, also known as Kendall’s tau coefficient, is a statistical measure used to determine the association between 
two variables [1]. It measures the ordinal association between two variables, which means it measures the degree of similarity 
between the rankings of two variables. The Kendall coefficient ranges from -1 to 1, where -1 indicates a perfect negative association, 
0 indicates no association, and 1 indicates a perfect positive association.

Let (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) be a set of random variables 𝑋 and 𝑌 . For each pair of (𝑥𝑖, 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗 ), where 𝑖 < 𝑗 are said to be 
concordant if the sort of (𝑥𝑖, 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗 ) agrees: that is, if either both 𝑥𝑖 > 𝑥𝑗 and 𝑦𝑖 > 𝑦𝑗 holds or both 𝑥𝑖 < 𝑥𝑗 and 𝑦𝑖 < 𝑦𝑗 , (𝑥𝑖, 𝑦𝑖)
and (𝑥𝑗 , 𝑦𝑗 ) are said to be concordant. Otherwise, they are said to be discordant. A pair (𝑥𝑖, 𝑦𝑖), (𝑥𝑗 , 𝑦𝑗 ) is said to be tied if and only if 
𝑥𝑖 = 𝑥𝑗 or 𝑦𝑖 = 𝑦𝑗 . A tied pair is neither concordant nor discordant.

The Kendall 𝜏 coefficient is defined as:

𝜏 =
𝑁𝑐 −𝑁𝑑

𝑁𝑝

= 1 −
2𝑁𝑝(𝑛
2

) , (1)

where 𝑁𝑐 is the number of concordant pairs, 𝑁𝑑 is number of discordant pairs, and 𝑁𝑃 is number of pairs.

Actually, there are three forms of Kendall’s coefficient, which include tau-a, tau-b and tau-c;

• Kendall’s tau-a: it is used when there are no ties in the data. It measures the strength of association between two variables by 
comparing the number of concordant and discordant pairs, defined as equation (1).

• Kendall’s tau-b:: it is used when there are ties in the data. It takes into account the number of tied pairs and adjusts the 
calculation accordingly, defined as equation (2).

𝜏𝐵 =
𝑁𝑐 −𝑁𝑑√(

𝑁0 −𝑁1
)(

𝑁0 −𝑁2
) (2)

where 𝑁0 = 𝑛(𝑛 − 1)∕2, 𝑁1 =
∑

𝑖
𝑡𝑖(𝑡𝑖 − 1)∕2, 𝑁2 =

∑
𝑗
𝑢𝑖(𝑢𝑖 − 1)∕2, 𝑡𝑖 is the number of tied values in the 𝑖𝑡ℎ group of ties for the 

first quantity group, and 𝑢𝑗 is the number of tied values in the 𝑗𝑡ℎ group of ties for the second quantity.

• Kendall’s tau-c: this form is a modification of tau-b that adjusts for ties in both variables. It is used when both variables have 
ties in the data, defined as equation (3).

𝜏𝐶 =
2
(
𝑁𝑐 −𝑁𝑑

)
𝑁2 (𝑀−1)

𝑀

(3)
5

where 𝑀 is 𝑚𝑖𝑛(𝑟, 𝑐) in which 𝑟 is the number of rows and 𝑐 is the number of columns.
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A toy example of calculating the Kendall coefficient is as follows. Suppose there are two continuous value vectors 𝐴 = [1, 3, 2, 4]𝑇
and 𝐵 = [3, 2, 4, 1]𝑇 .

Step 1: Compute the number of concordant pairs 𝑁𝑐 and discordant pairs 𝑁𝑑 . This example shows four elements in each vector, 
with six ranking pairs. We represent these ranking pairs as (𝐴𝑖, 𝐵𝑗 ), where 𝐴𝑖 is an element from list 𝐴, and 𝐵𝑗 is an element from 
list 𝐵. In this example, the ranking pairs are as follows:

1.{(𝐴1,𝐵1), (𝐴2,𝐵2)}→ {(1,3), (3,2)}

2.{(𝐴1,𝐵1), (𝐴3,𝐵3)}→ {(1,3), (2,4)}

3.{(𝐴1,𝐵1), (𝐴4,𝐵4)}→ {(1,3), (4,1)}

4.{(𝐴2,𝐵2), (𝐴3,𝐵3)}→ {(3,2), (2,4)}

5.{(𝐴2,𝐵2), (𝐴4,𝐵4)}→ {(3,2), (4,1)}

6.{(𝐴3,𝐵3), (𝐴4,𝐵4)}→ {(1,3), (4,1)}

In ranking pair 1, we see 𝐴1 <𝐴2 and 𝐵1 > 𝐵2. Therefore, the pair is said to be discordant. In ranking pair 2, we see 𝐴1 <𝐴3 and 
𝐵1 < 𝐵3. Thus, the pair is said to be concordant. Finally, we can get 𝑁𝑐 = 1, 𝑁𝑑 = 5.

Step 2: Compute the number of ties in ranking pairs. We need to calculate the number of pairing elements with the same values 
(referred to as ties) in vector 𝐴 and vector 𝐵. Because there are no duplicate elements in both A and B, the number of ties in A and 
B is 0. Thus, 𝑁1 = 0, 𝑁2 = 0.

Step 3: Based on the above results, in this toy example, the Kendall coefficient can be calculated by forms of tau-a or tau-b as 
follows:

𝜏 =
𝑁𝑐 −𝑁𝑑

𝑁𝑝

= 1 − 5
6

= −0.66

If 𝐴 and 𝐵 are two discrete variables, assuming 𝐴 = [𝑑, 𝑎, 𝑐, 𝑏]𝑇 and 𝐵 = [𝑥, 𝑦, 𝑧, 𝑤]𝑇 . First, for the values of 𝐴 and 𝐵, we can 
assign a rank to each discrete value. For example, we can map {𝑎, 𝑏, 𝑐, 𝑑} to ranks {1, 2, 3, 4}, and {𝑤, 𝑥, 𝑦, 𝑧} to ranks {1, 2, 3, 4}. 
This way, we obtain the rank sequences of 𝐴 and 𝐵 as 𝐴′ = [4, 1, 3, 2]𝑇 and 𝐵′ = [2, 3, 4, 1]𝑇 . Then, we can use the steps above to 
calculate the Kendall coefficient between 𝐴′ and 𝐵′.

These three types of Kendall correlation coefficients can be used to measure the ordinal relationship between variables and the 
consistency of rankings and assist in analyzing the correlation between features and the ranking of variables. The Kendall coefficient 
is a non-parametric statistic that does not make assumptions about the data distribution. Therefore, the Kendall coefficient is highly 
adaptable when dealing with various data types in real-world applications. In feature selection tasks, the ordinal consistency of 
features is crucial in determining their importance. By calculating the Kendall coefficient, we can obtain relative order information 
between features, thereby determining their correlations and polarities.

3.1.2. The PN coefficient

Inspired by the Kendall coefficient, the PN coefficient is defined as follows:

Definition 1. PN coefficient Let (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) be a set of random variables 𝑋 and 𝑌 .

𝑃𝑁 (𝑋,𝑌 ) =

{
1 + 2

𝑛(𝑛−1)
∑

𝑠𝑔𝑛(𝑥𝑖 − 𝑥𝑗 )𝑠𝑔𝑛(𝑦𝑖 − 𝑦𝑗 ), 𝑖 < 𝑗 < 𝑛

1, Otherwise
(4)

where 𝑠𝑔𝑛(𝜆) equals 1 if 𝜆 > 0, 𝑠𝑔𝑛(𝜆) equals 1 if 𝜆 > 0, and 𝑠𝑔𝑛(𝜆) equals 0 if 𝜆 = 0. In other words,

𝑠𝑔𝑛(𝑥𝑖 − 𝑥𝑗 )𝑠𝑔𝑛(𝑦𝑖 − 𝑦𝑗 ) =
⎧⎪⎨⎪⎩
1, (𝑥𝑖, 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗 ) are concordant

−1, (𝑥𝑖, 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗 ) are disconcordant

0, Otherwise

If the pairs of random variables 𝑋 and 𝑌 exist tied pairs. The PN coefficient is calculated as follows:

𝑃𝑁 (𝑋,𝑌 ) =
⎧⎪⎨⎪⎩
1 +

∑
𝑠𝑔𝑛(𝑥𝑖 − 𝑥𝑗 )𝑠𝑔𝑛(𝑦𝑖 − 𝑦𝑗 )√(
𝑁0 −𝑁𝑥

)(
𝑁0 −𝑁𝑦

) , 𝑖 < 𝑗 < 𝑛

1, Otherwise

(5)

where 𝑁0 is the number of pairs, 𝑁𝑥 is the tied number in 𝑋, and 𝑁𝑦 is the tied number in 𝑦.

The PN coefficients were transformed based on the Kendall coefficient, and the calculation method can be referred to the example 
of Kendall coefficient calculation in the previous section.
6

Theorem 1. 0 ≤ 𝑃𝑁 (𝑋,𝑌 ) ≤ 2
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Proof. Consider the case where 𝑖 < 𝑗 < 𝑛. In terms of Definition 1, it can be deduced as:

𝑠𝑔𝑛(𝑥𝑖 − 𝑥𝑗 )𝑠𝑔𝑛(𝑦𝑖 − 𝑦𝑗 ) =
⎧⎪⎨⎪⎩
1, 𝑥𝑖 < 𝑥𝑗 , 𝑦𝑖 < 𝑦𝑗 𝑜𝑟 𝑥𝑖 > 𝑥𝑗 , 𝑦𝑖 > 𝑦𝑗

−1, 𝑥𝑖 < 𝑥𝑗 , 𝑦𝑖 > 𝑦𝑗 𝑜𝑟 𝑥𝑖 > 𝑥𝑗 , 𝑦𝑖 < 𝑦𝑗

0, Otherwise

(6)

There are a total of 
(

𝑛

2

)
possible point pairs, where 

(
𝑛

2

)
= 𝑛(𝑛− 1)

2
is the binomial coefficient for the number of ways to 

choose two items from n items. When all the pair combinations are said to be concordant the sort order of (𝑥𝑖, 𝑥𝑗 ) and (𝑦𝑖, 𝑦𝑗 ), we 

can obtain the maximum value of the formula 𝑛(𝑛− 1)
2

. According to Definition 1 it has the max value 2. Similarly, the formula can 
achieve a minimum value of 0. Thus, 0 ≤ 𝑃𝑁 (𝑋,𝑌 ) ≤ 2. □

The PN coefficient reflects the relationship between two random variables. If two features are irrelevant or completely random, 
the value of the PN coefficient is 1. A larger PN coefficient (>1) indicates a stronger positive polarity, while a smaller coefficient 
(<1) indicates a negative polarity. For example, in the case of a cold (Fig. 2), we calculated the PN coefficients of different features 
for influenza. The PN coefficient for fever and influenza is 1.6325, while the PN coefficient for skin allergy and influenza is 0.2929. 
When we use the PN coefficient to measure the relationship between a conditional feature and a specific class label, it reflects the 
polarity of the feature.

In terms of the PN coefficient, we give the definitions of positive feature and negative feature as follows:

Definition 2. Positive Feature

Given a condition feature 𝑓 = [𝑥1, 𝑥2, ..., 𝑥𝑛]𝑇 and the decision attribute 𝑑 = [𝑦1, 𝑦2, ..., 𝑦𝑛]𝑇 . We consider 𝑓 is a positive feature to 
𝑑, if

𝑃𝑁(𝑓,𝑑) > 1 (7)

Definition 3. Negative Feature

Given a condition feature 𝑓 = [𝑥1, 𝑥2, ..., 𝑥𝑛]𝑇 and the decision attribute 𝑑 = [𝑦1, 𝑦2, ..., 𝑦𝑛]𝑇 . We consider 𝑓 is a negative feature 
to 𝑑, if

𝑃𝑁(𝑓,𝑑) < 1 (8)

Specifically, positive features contribute to the positive correlation (𝑦𝑖 = 1) between condition feature 𝑓 and decision attribute 𝑑. 
In contrast, negative features contribute to the negative correlation (𝑦𝑖 ≠ 1). For example, if a patient has symptoms such as fever, 
cough, and sneezing, they are more likely to have a cold. These symptoms can be seen as positive features of a cold, and they play 
a promoting role in the diagnosis of a cold. Meanwhile, if a patient does not have feelings of fatigue, skin allergies, or chest pain, it 
can help us to exclude the possibility of the patient having a cold. These symptoms can be seen as negative features of a cold, and 
they play a role in excluding the diagnosis of a cold.

3.2. The feature selection algorithm

In this segment, a new feature selection algorithm is proposed, that considering the polarity of features and selects positive and 
negative features. Both positive and negative features are helpful to classification task. For example, when judging whether a patient 
has a cold. If the patient has symptoms such as fever and cough, which are positive features, the occurrence of these features can 
effectively help us predict the classification result “cold”. If the patient does not feel tired, which is a negative feature, we can exclude 
the possibility of a cold (although we do not know what disease he had).

For our new method, it selects both positive and negative features simultaneously. Therefore, to determine the ratio of positive 
and negative features automatically, we utilize PN value of features to define the PN Ratio as follows:

Definition 4. PN Ratio The PN Ratio is the ratio of the number of selected positive features to the total number of selected features.

𝑃𝑁𝑅𝑎𝑡𝑖𝑜 =

|||||
𝑛∑

𝑖=1
𝑃𝑖 − 𝑛

||||| × 𝑛

|||||
𝑛∑

𝑖=1
𝑃𝑖 − 𝑛

||||| × 𝑛+
||||||

𝑚∑
𝑗=1

𝑁𝑗 −𝑚

|||||| ×𝑚

(9)

where 𝑛 is the number of positive features, 𝑚 is the number of negative features, 𝑃𝑖 is the PN value of the 𝑖𝑡ℎ positive feature, and 
7

𝑁𝑗 is the PN value of 𝑗𝑡ℎ negative feature.
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By utilizing Equation (9), the PN Ratio can be automatically calculated through the employment of PN values and the feature 
count. This formula can dynamically compute the proportion of positive to negative features based on varying datasets. As a result, 
it enables the determination of the quantity of positive and negative features while maintaining a fixed feature number.

Suppose the number of selected features is set to 𝐾 . Here we define the calculation formula for the number of positive and 
negative features as follows:

𝑁𝑈𝑀𝑝 = ⌊𝑃𝑁𝑅𝑎𝑡𝑖𝑜 ×𝐾⌋ (10)

𝑁𝑈𝑀𝑁 =𝐾 −𝑁𝑈𝑀𝑝 (11)

where 𝑁𝑈𝑀𝑝 is the number of selected positive features and 𝑁𝑈𝑀𝑛 is the number of selected negative features.

Furthermore, considering the issue of feature redundancy, we have incorporated feature interactions and mutual information to 
determine redundancy among features into our feature selection approach [47]. Suppose 𝑓1 and 𝑓2 are two condition features, 𝑑 is 
the decision feature (class attribute), the interaction value between 𝑓1 and 𝑓2 on 𝑑 as:

𝐼𝑛𝑡𝐷(𝑓1, 𝑓2) = 𝐼(𝑑; {𝑓1, 𝑓2}) − 𝐼(𝑓1;𝑑) − 𝐼(𝑓2;𝑑) (12)

where 𝐼(⋅, ⋅) indicates the mutual information between two features.

If 𝐼𝑛𝑡𝐷(𝑓1, 𝑓2) < 0, there is a redundancy between 𝑓1 and 𝑓2 on 𝑑. Then, we pick the one with the greater PN coefficient from 𝑓1
and 𝑓2. This method of determining feature redundancy has the advantage of not requiring parameter settings or thresholds.

In conclusion, we propose an interpretable feature selection method named PNFS(Algorithm 1), considering the polarity of 
features, and divide the positive and negative features by PN value. Positive features reflect the correlation of features to labels, 
while negative features, unlike irrelevant features, play an exclusionary role in the classification process.

Algorithm 1 Positive and Negative Feature Selection.

Input:

𝐹 : the condition feature set;

𝑑: the decision feature;

𝐾 : the number of selected features;

Output:

𝑆 : the subset of selected feature;

1: Initialization: Set 𝑃 = {}, 𝑁 = {};

2: For each feature 𝑓𝑖 in 𝐹
3: If 𝑃𝑁(𝑓𝑖, 𝑑) > 1
4: For each feature 𝑓𝑝 in 𝑃
5: If 𝐼𝑛𝑡𝐷(𝑓𝑖, 𝑓𝑝) < 0 and 𝑃𝑁(𝑓𝑖, 𝑑) < 𝑃𝑁(𝑓𝑝, 𝑑)
6: Discard 𝑓𝑖 ;

7: Else 𝑃 = 𝑃 ∪ {𝑓𝑖};

8: End If
9: End For

10: End If
11: If 𝑃𝑁(𝑓𝑖, 𝑑) < 1
12: For each feature 𝑓𝑛 in 𝑁
13: If 𝐼𝑛𝑡𝐷(𝑓𝑖, 𝑓𝑛) < 0 and 𝑃𝑁(𝑓𝑛, 𝑑) < 𝑃𝑁(𝑓𝑖, 𝑑)
14: Discard 𝑓𝑖 ;

15: Else 𝑁 =𝑁 ∪ {𝑓𝑖};

16: End If
17: End For

18: End If
19: End For

20: 𝑅𝑎𝑡𝑖𝑜𝑃𝑁 : calculate the PN Ratio;

21: 𝑆 : select the features with the largest PN coefficient from P and N in terms of 𝑅𝑎𝑡𝑖𝑜𝑃𝑁 and 𝐾 ;

22: Output 𝑆 .

Specifically, for each feature 𝑓𝑖 in 𝐹 , we first calculate the PN coefficient of 𝑓𝑖. In steps 3 to 9, if 𝑃𝑁(𝑓𝑖, 𝑑) > 1, we consider 𝑓𝑖

as a positive feature and check whether 𝑓𝑖 is redundant to the selected feature 𝑓𝑝 in the positive feature subset 𝑃 . Similarly, in steps 
10 to 17, 𝑓𝑖 is considered a negative feature, and the algorithm will check if feature redundancy exists in negative feature subset 𝑁 . 
Step 20 calculates the PN Ratio in terms of the selected positive and negative feature subsets. In Step 21, we first rank the features 
in the positive candidate feature subset (𝑃 ) and the negative candidate feature subset (𝑁). We select features with the largest PN 
8

coefficient from these two subsets in terms of 𝑅𝑎𝑡𝑖𝑜𝑃𝑁 and 𝐾 . Finally, we output the final selected feature subset 𝑆 .
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Fig. 2. An example of the PN coefficient and PN features. We use the flu example to explain the PN coefficient and our proposed positive and negative features. By 
calculating the PN coefficient, we determine the positive feature “fever” (𝑃𝑁(𝑓𝑒𝑣𝑒𝑟, 𝐹 𝑙𝑢) > 1) and the negative feature “skin rash” (𝑃𝑁(𝑆𝑘𝑖𝑛𝑟𝑎𝑠ℎ, 𝐹 𝑙𝑢) < 1) to the 
decision class “flu”. In other words, fever can help us diagnose the flu, while skin rash can help us exclude influenza, which is consistent with the logic of disease 
diagnosis.

3.3. A case study of real-world dataset

In this section, we first use a toy example (as shown in Fig. 2) to illustrate the calculation of the PN coefficient. Then, we apply 
the PN coefficient and PNFS feature selection method on a real-world dataset.

To calculate the 𝑃𝑁(𝑓𝑒𝑣𝑒𝑟, 𝐹 𝑙𝑢), we first obtain two vectors respectively in Fig. 2:

𝐹𝑒𝑣𝑒𝑟 = [1,0,1,1,1,1]𝑇 , 𝐹 𝑙𝑢 = [1,0,1,1,0,1]𝑇

Each vector has six elements, so there are 15 ranking pairs. We represent these ranking pairs as (𝑥𝑖, 𝑦𝑗 ), where 𝑥𝑖 is an element 
from vector 𝐹𝑒𝑣𝑒𝑟, and 𝑦𝑗 is an element from vector 𝐹 𝑙𝑢. The ranking pairs are shown as follows:

1.{(𝑥1, 𝑦1), (𝑥2, 𝑦2)} → {(1, 1), (0, 0)}; 2.{(𝑥1, 𝑦1), (𝑥3, 𝑦3)} → {(1, 1), (1, 1)}
3.{(𝑥1, 𝑦1), (𝑥4, 𝑦4)} → {(1, 1), (1, 1)}; 4.{(𝑥1, 𝑦1), (𝑥5, 𝑦5)} → {(1, 1), (1, 0)}
5.{(𝑥1, 𝑦1), (𝑥6, 𝑦6)} → {(1, 1), (1, 1)}; 6.{(𝑥2, 𝑦2), (𝑥3, 𝑦3)} → {(0, 0), (1, 1)}
7.{(𝑥2, 𝑦2), (𝑥4, 𝑦4)} → {(0, 0), (1, 1)}; 8.{(𝑥2, 𝑦2), (𝑥5, 𝑦5)} → {(0, 0), (1, 0)}
9.{(𝑥2, 𝑦2), (𝑥6, 𝑦6)} → {(0, 0), (1, 1)}; 10.{(𝑥3, 𝑦3), (𝑥4, 𝑦4)} → {(1, 1), (1, 1)}
11.{(𝑥3, 𝑦3), (𝑥5, 𝑦5)} → {(1, 1), (1, 0)}; 12.{(𝑥3, 𝑦3), (𝑥6, 𝑦6)} → {(1, 1), (1, 1)}
13.{(𝑥4, 𝑦4), (𝑥5, 𝑦5)} → {(1, 1), (1, 0)}; 14.{(𝑥4, 𝑦4), (𝑥6, 𝑦6)} → {(1, 1), (1, 1)}
15.{(𝑥5, 𝑦5), (𝑥6, 𝑦6)} → {(1, 0), (1, 1)}

Then, we can get the number of concordant pairs 𝑁𝑐 = 4, the number of discordant pairs 𝑁𝑑 = 0, the number of tied pairs 
𝑁𝑥 = 10, and the number of tied pairs 𝑁𝑦 = 7. Therefore,∑

𝑠𝑔𝑛(𝑥𝑖 − 𝑥𝑗 )𝑠𝑔𝑛(𝑦𝑖 − 𝑦𝑗 ) =1 + 0 + 0 + 0 + 0 + 1 + 1 + 0

+ 1 + 0 + 0 + 0 + 0 + 0 + 0 = 4

Thus, according to the definition of PN coefficient, the 𝑃𝑁(𝐹𝑒𝑣𝑒𝑟, 𝐹 𝑙𝑢) can be calculated as follows:

𝑃𝑁 (𝐹𝑒𝑣𝑒𝑟,𝐹 𝑙𝑢) = 1 + 4√
(15 − 10) (15 − 7)

= 1.6325

Similarly, the 𝑃𝑁(𝑆𝑘𝑖𝑛𝑟𝑎𝑠ℎ, 𝐹 𝑙𝑢) = 0.2929.

In practical applications, the interpretability of feature selection is very important. On the one hand, selected features can reflect 
the essential characteristics of the data, thereby improving the accuracy and generalization ability of the model. On the other hand, 
interpretable features can help humans understand the decision-making process of the model, thereby enhancing the credibility and 
acceptability of the model.

To demonstrate the interpretability of the PN coefficient, we apply it to the German Credit dataset from UCI, a low-dimensional 
dataset with 20 features, as an example. This dataset categorizes individuals based on attribute descriptions into good or bad 
credit risks. After calculating the PN coefficient for each feature, we obtained the value of the PN coefficient for each feature, as 
shown in Table 1. The positive features (PN coefficient > 1, such as property and status of existing checking account) correlate 
with creditworthiness, and individuals with these features tend to have lower credit risks. In contrast, the negative features (PN 
9

coefficient < 1, such as foreign worker) tend to have high credit risks. Additionally, the irrelevant features (PN coefficient around 



Information Sciences 676 (2024) 120818P. Zhou, J. Liang, Y. Yan et al.

Table 1

An example of PN coefficient in real-world dataset.

Description PN coefficient

Attribute12 Property 1.3316

Attribute1 Status of existing checking account 1.1636

Attribute7 Present employment since 1.1084

Attribute3 Credit history 1.0672

Attribute11 Present residence since 1.0170

Attribute6 Savings account/bonds 0.9788

Attribute8 Installment rate in percentage of disposable income 0.9534

Attribute9 Personal status and sex 0.9256

Attribute20 Foreign worker 0.8258

Fig. 3. The ensemble positive and negative classification framework.

1) are unrelated to creditworthiness, such as savings account, installment rate, and present residence since. The selection of these 
features aligns with people’s intuitive judgments in daily life, highlighting the interpretability of PN coefficient.

The detailed steps of the PNFS algorithm applied to the above dataset are as follows:

Assuming that PNFS needs to select six features, and the features in dataset German Credit are denoted as 𝑓1, 𝑓2, ..., 𝑓20.

For feature 𝑓1, PNFS calculates the PN coefficient as 𝑃𝑁(𝑓1, 𝑑) = 1.1636 > 1. Thus, 𝑓1 will be added to the positive feature 
subset, 𝑃 = {𝑓1}. For feature 𝑓2, 𝑃𝑁(𝑓2, 𝑑) = 0.9726 < 1. Therefore, 𝑓2 will be added to the negative feature subset set, 𝑁 = {𝑓2}. 
For feature 𝑓3, 𝑃𝑁(𝑓3, 𝑑) = 1.0672 > 1. Since the set 𝑃 is not empty, we need to calculate the redundancy between 𝑓3 and 𝑓1 using 
equation (12) and we obtain 𝐼𝑛𝑡𝑑 (𝑓3, 𝑓1) = 0.7805 > 0. As a result, 𝑓3 will be added to the subset, and 𝑃 = {𝑓1, 𝑓3}. Other features 
are treated similarly.

After traversing all the features, PNFS calculates the PNRatio using equation (9), and we get 𝑃𝑁𝑅𝑎𝑡𝑖𝑜 = 0.8698. Then, using 
equations (10) and (11), the number of selected positive features is 4, and the number of selected negative features is 2.

Finally, PNFS selects the top four features with the highest PN coefficients from the subset 𝑃 and the top two features with the 
lowest PN coefficients from the subset 𝑁 .

Positive and negative features can help us to understand the data. In practical applications, in terms of domain knowledge and 
expert experience, we can manually analyze the essential features in the data. However, this is very inefficient and expensive. 
Therefore, we can consider the features’ interpretability and credibility by calculating the PN coefficient to determine positive and 
negative features.

3.4. The ensemble PN classification framework

We introduce a new ensemble classification framework that efficiently incorporates both positive and negative features in classi-

fication tasks. Inspired by ensemble learning, we train multiple classifiers tailored to positive and negative features.

In this framework, the PNFS algorithm is employed to select positive and negative features from the target dataset. Following this, 
positive classifiers are trained using the positive feature subset, while the selected negative feature subset is used to train negative 
classifiers. Ultimately, we combine the classification results from the positive and negative classifiers to obtain the final outputs. The 
main steps of this proposed ensemble positive and negative classification framework are illustrated in Fig. 3. This new classification 
framework, named EPNC, considers feature polarity at two levels and utilizes a diverse range of classifiers for ensemble learning. By 
combining their results, this classification method enhances the accuracy of classification and provides a more interpretable model.

Assuming that the selected positive and negative feature subsets are denoted as 𝑃 and 𝑁 , and there are 𝑚 classifiers in our ensem-

ble strategy framework. We define classifiers set 𝐶 = {𝐶𝑃 , 𝐶𝑁}, which includes the positive classifier set 𝐶𝑃 = {𝐶𝑝1
, 𝐶𝑝2

, 𝐶𝑝3
, ..., 𝐶𝑝𝑚

}
and the negative classifier set 𝐶𝑁 = {𝐶𝑛1

, 𝐶𝑛2
, 𝐶𝑛3

, ..., 𝐶𝑛𝑚
}. The main challenge of our proposed ensemble framework is how to 

integrate the results of positive and negative classifiers. Suppose the target dataset has 𝑘 instances and 𝑛 different class labels. After 
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obtaining the classification results, for 𝑚 positive classifiers, the result set is 𝑃𝑅𝑒𝑠𝑢𝑙𝑡 = {𝑅𝑃1, 𝑅𝑃2, 𝑅𝑃3, ..., 𝑅𝑃𝑚}, and for 𝑚 negative 
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classifiers, the result set is 𝑁𝑅𝑒𝑠𝑢𝑙𝑡 = {𝑅𝑁1, 𝑅𝑁2, 𝑅𝑁3, ..., 𝑅𝑁𝑚}. Let (𝑅𝑃𝑘×𝑛)𝑖 matrix represent the prediction result of 𝑖-th positive 
classifiers and (𝑅𝑁𝑘×𝑛)𝑖 matrix represent the prediction result of 𝑖-th negative classifiers.

For a specific instance 𝑥 and class label 𝑦:

𝑅𝑃 (𝑥, 𝑦) =

{
1, 𝑥 is predicted to be true by the positive classifier

0, otherwise
(13)

𝑅𝑁(𝑥, 𝑦) =

{
1, 𝑥 is predicted to be true by the negative classifier

0, otherwise
(14)

In the ensemble phase I, multiple classifiers are trained using positive and negative features for each class. Then, we can get 
positive classification result 𝑅𝑃 and negative classification result 𝑅𝑁 for each instance. We combine the classification result of each 
instance into ensemble positive matrix 𝐸𝑃 and ensemble negative matrix 𝐸𝑁 . In ensemble phase II, the ensemble positive results 𝐸𝑃

and ensemble negative results 𝐸𝑁 are merged to obtain the final classification result matrix 𝐸𝑃𝑁 .

In order to derive the ensemble matrix 𝐸𝑃 and 𝐸𝑁 , each 𝑅𝑃 and 𝑅𝑁 matrix is merged by counting the predicted outcomes for 
each category. Hence according to the result of 𝑃𝑅𝑒𝑠𝑢𝑙𝑡 and 𝑁𝑅𝑒𝑠𝑢𝑙𝑡 we can formulate 𝐸𝑃 matrix and 𝐸𝑁 matrix as:

𝐸𝑃 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑚∑
𝑖=1

𝑅𝑃𝑖(1,1),
𝑚∑
𝑖=1

𝑅𝑃𝑖(1,2), ...

𝑚∑
𝑖=1

𝑅𝑃𝑖(1, 𝑛)

𝑚∑
𝑖=1

𝑅𝑃𝑖(2,1),
𝑚∑
𝑖=1

𝑅𝑃𝑖(2,2), ...

𝑚∑
𝑖=1

𝑅𝑃𝑖(2, 𝑛)

𝑚∑
𝑖=1

𝑅𝑃𝑖(3,1),
𝑚∑
𝑖=1

𝑅𝑃𝑖(3,2), ...

𝑚∑
𝑖=1

𝑅𝑃𝑖(3, 𝑛)

⋮ ⋮ ⋱ ⋮
𝑚∑
𝑖=1

𝑅𝑃𝑖(𝑚,1),
𝑚∑
𝑖=1

𝑅𝑃𝑖(𝑚,2), ...

𝑚∑
𝑖=1

𝑅𝑃𝑖(𝑚,𝑛)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐸𝑁 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑚∑
𝑖=1

𝑅𝑁𝑖(1,1),
𝑚∑
𝑖=1

𝑅𝑁𝑖(1,2), ...

𝑚∑
𝑖=1

𝑅𝑁𝑖(1, 𝑛)

𝑚∑
𝑖=1

𝑅𝑁𝑖(2,1),
𝑚∑
𝑖=1

𝑅𝑁𝑖(2,2), ...

𝑚∑
𝑖=1

𝑅𝑁𝑖(2, 𝑛)

𝑚∑
𝑖=1

𝑅𝑁𝑖(3,1),
𝑚∑
𝑖=1

𝑅𝑁𝑖(3,2), ...

𝑚∑
𝑖=1

𝑅𝑁𝑖(3, 𝑛)

⋮ ⋮ ⋱ ⋮
𝑚∑
𝑖=1

𝑅𝑁𝑖(𝑚,1),
𝑚∑
𝑖=1

𝑅𝑁𝑖(𝑚,2), ...

𝑚∑
𝑖=1

𝑅𝑁𝑖(𝑚,𝑛)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Finally, in ensemble phase 2, the 𝐸𝑃𝑁 matrix is obtained by merging the 𝐸𝑃 and 𝐸𝑁 matrices by equation (15).

𝐸𝑃𝑁 (𝑥, 𝑦) =
𝑚∑
𝑖=1

𝑅𝑃𝑖(𝑥, 𝑦) +
𝑚∑
𝑖=1

𝑅𝑁𝑖(𝑥, 𝑦) (15)

In 𝐸𝑃𝑁
𝑘×𝑛, for each instance 𝑜𝑖, we can get a vector 𝑣𝑖 = [𝑤1, 𝑤2, ..., 𝑤𝑛], where 𝑤𝑖 is the weight of 𝑜𝑖 belongs to the class label 

𝑐𝑖. The highest weight in each row of 𝐸𝑃𝑁 is the final classification result of EPNC, as shown in Fig. 4.

For multi-class classification tasks, assume there are 𝑛 different class labels. PNFS selects positive and negative features corre-

sponding to each class label 𝑙𝑖. Subsequently, positive and negative classifiers are constructed within the framework for ensemble 
classification, resulting in classification results 𝐸𝑃𝑁 for each class. After comparison, the class label with the highest weight is iden-

tified as the final classification result. By incorporating positive and negative features into feature selection and ensemble learning, 
the EPNC framework enhances the interpretability of selected features and the classification performance in multi-class classification 
tasks.

By integrating different classifiers and considering the polarity of features, our classification method provides accurate prediction 
results and considers the interpretability of features.

The detail of the proposed ensemble positive and negative classification framework is shown in Algorithm 2.

Specifically, in step 3, multiple classifiers are trained based on the selected positive and negative feature subsets. Steps 5 to 9 are 
executed for each instance 𝑥 in 𝐷 to acquire the ensemble result matrices from both the positive and negative classifiers. In steps 10 
to 12, the ensemble results from the positive and negative classifiers are merged to obtain the weight matrix. Finally, in step 14, the 
11

classification result is outputted.
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Fig. 4. The ensemble strategy of EPNC.

Algorithm 2 Ensemble Positive and Negative Classification Framework.

Input:

𝐷: the target dataset;

𝐾 : the number of selected features;

Output:

𝑅: the classification results;

1: Set 𝑅 = {};

2: Get positive feature subset 𝑓𝑃 and negative feature subset 𝑓𝑁 by Algorithm 1.

3: C: training positive and negative classifiers with 𝑓𝑃 and 𝑓𝑁 ;

4: For each instance 𝑥 in dataset 𝐷:

5: For each classifier in 𝐶 :

6: Obtain predicted results 𝑅𝑃 (𝑥, 𝑦) and 𝑅𝑁(𝑥, 𝑦);
7: 𝐸𝑃 (𝑥, 𝑦) =

∑𝑛

𝑖=1 𝑅𝑃𝑖(𝑥, 𝑦);
8: 𝐸𝑁 (𝑥, 𝑦) =∑𝑛

𝑖=1𝑅𝑁𝑖(𝑥, 𝑦);
9: End For

10: 𝐸𝑃𝑁 (𝑥, 𝑦) =𝐸𝑃 (𝑥, 𝑦) +𝐸𝑁 (𝑥, 𝑦);
11: Find the predicted result 𝐶 with maximum weight in 𝐸𝑃𝑁 ;

12: 𝐶 →𝑅;

13: End For

14: Output 𝑅.

3.5. Time complexity

Here, we present a time complexity estimation for the PNFS and PNEC algorithms. Assuming 𝑛 represents the number of instances 
in the target dataset and 𝑚 represents the number of features.

For the PNFS algorithm, the key steps of this algorithm involve two loops on each feature 𝑓𝑖, where the internal loop performs 
𝑂(|𝑃 |) or 𝑂(|𝑁|) operations, and the external loop performs 𝑂(|𝐹 |) operations. The time complexity of the PN coefficient calculation 
is 𝑂(𝑛2). Hence, the overall time complexity of PNFS is 𝑂((𝑚 ∗ 𝑛)2).

For the EPNC, step 2 executes the PNFS algorithm and the time complexity is 𝑂(|𝐹 |2). Step 3 trains the positive and negative 
classifiers in this algorithm depends on the number of classifiers |𝐶|, which we assume is 𝑂(|𝐶| ∗ Ω). For each instance, it is necessary 
to iterate through a set of classifiers, calculate the prediction results, and perform ensemble accumulation operations to compute 
𝐸𝑃 and 𝐸𝑁 . In the worst case, the time complexity of this step is 𝑂(𝑛 ∗ |𝐶| ∗ Ω). Therefore, the overall time complexity of EPNC is 
𝑂(𝑛 ∗ |𝐶| ∗ Ω + (𝑚 ∗ 𝑛)2).

4. Experiments

In this part, extensive experiments are conducted to validate the effectiveness of the proposed feature selection method (PNFS) 
and ensemble classification framework (EPNC). We first present the experimental setup, involving datasets, evaluation metrics, 
competing algorithms and computational device. Then experiments are conducted between PNFS and four competing information 
measurements to validate the effectiveness of both positive and negative features. Besides, EPNC is compared to eight state-of-the-art 
feature selection algorithms to illustrate the superiority of our proposed ensemble classification framework. In the end, we evaluated 
12

the performance of EPNC and these competing algorithms varying with different numbers of features.
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Table 2

Real-world Datasets.

Data Set Instances Features Classes Feature Type

Arcene 200 10000 2 Integer

CNS 60 7129 2 Integer

Gisette 7000 5000 2 Integer

Advertisements 2539 1558 2 Mixed

Leukemia 72 7129 2 Real

Colon 62 2000 2 Real

Prostate-std 102 6033 2 Real

Prostate 102 5966 2 Real

Dlbcl 77 6258 2 Real

Leukemia-4c 72 7129 4 Real

Srbct 83 2308 4 Real

Lymphoma-std 62 4026 3 Real

Lung2 203 3312 5 Real

MLL 72 12582 3 Integer

UNSW-NB15 11082 31 3 Mixed

CICIDS2017 11451 78 4 Mixed

4.1. Experimental setup

4.1.1. Datasets

Table 2 lists 16 real-world datasets, where datasets Advertisements and CNS are from UCI,1 datasets Arcene and Gisette are 
from NIPS 2003, datasets Colon, Srbct, Lung2, Lymphoma-std, Prostate, Prostate-std, Dlbcl, Leukemia, Leukemia-4c, MLL are from.2

CICIDS20173 and UNSW-NB154 are network intrusion detection datasets with millions of instances. Because some competing algo-

rithms cannot handle these two massive datasets, we selected a subset of these two datasets for experimentation.

4.1.2. Evaluation metrics

We apply three evaluation metrics to validate the predictive performance and stability of these competing algorithms as follows:

• Accuracy (ACC) is a commonly used evaluation metric to measure the performance of a classification model. It represents the 
proportion of correctly predicted samples to the total number of samples. The formula to calculate accuracy is as follows:

𝐴𝐶𝐶 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝐹𝑁
,

where TP represents True Positive, FP represents False Positive, TN represents True Negative, and FN represents False Negative.

• F-Measure(F-Score) is a widely used metric for evaluating the performance of classification models. It combines precision and 
recall, where a value closer to 1 indicates better model performance. The formula for calculating F-measure is as follows:

𝐹 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
,

where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃+𝐹𝑃
, 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃+𝐹𝑁
.

• Stability: Similarity-based measurement introduced by Dunne et al. [13] is used to measure the stability of feature selection 
algorithms by comparing the similarity of feature selection results across multiple as follows:

Φ(𝑍) = 1
𝑀(𝑀 − 1)

𝑀∑
𝑖=1

𝑀∑
𝑗=1

𝜙(𝑠𝑖, 𝑠𝑗 ),

where 𝑍 is a set that contains the features selected in each of the 𝑀 iterations, and 𝜙(𝑠𝑖, 𝑠𝑗 ) computes the similarity of selected 
features 𝑠𝑖 and 𝑠𝑗 .

Fundamental classifiers were employed in Matlab, including KNN (k = 3), SVM (with the linear kernel), and CART, to evaluate 
the effectiveness of different selected feature subsets in experiments. For each dataset, we use a 5-fold cross-validation method, 
dividing the dataset into five equal parts, with four parts for training and one part for testing each time. We utilize the same training 
and testing set division for each competing algorithm. In addition, we conducted ten iterations on each dataset and assessed the 
results based on their average performance, thus ensuring the reliability of the experimental outcomes.

1 https://archive .ics .uci .edu/.
2 https://www .cs .binghamton .edu /~lyu /KDD08 /data/.
3 https://www .unb .ca /cic /datasets /ids -2017 .html.
13

4 https://research .unsw .edu .au /projects /unsw -nb15 -dataset.

https://archive.ics.uci.edu/
https://www.cs.binghamton.edu/~lyu/KDD08/data/
https://www.unb.ca/cic/datasets/ids-2017.html
https://research.unsw.edu.au/projects/unsw-nb15-dataset
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Furthermore, we perform a Friedman test at a significance level of 95% under the null hypothesis to verify whether our proposed 
method and other comparative algorithms have significant differences [12]. If the null hypothesis of the Friedman test was rejected, 
a post-hoc Nemenyi test was conducted.

4.1.3. Competing algorithms

We compare EPNC with eight state-of-the-art feature selection methods, including CFS [48], OLSFS [46], QLFS [44], PMFS [21], 
FSDK [32], MRMR [35], MFS-MCDM [20] and SVM-RFE [3]. The comparison algorithms’ introduction and parameter settings in the 
experiment are as follows:

• CFS (Curvature-based Feature Selection) ranks the importance of features based on the concept of Menger curvature. The 
main idea of the CFS algorithm is to evaluate the significance of features by calculating the Menger curvature on each feature 
dimension. Menger curvature is a mathematical concept used to measure the curvature of a curve. In CFS, the Menger curvature 
is employed to quantify the variation in data distribution along feature dimensions. Given a dataset, CFS first calculates the 
Menger curvature on each feature dimension. Rank the features based on their Menger curvature values to determine their 
order of importance. Then, iteratively select features starting from the highest-ranked feature and evaluate the classification 
performance after adding each feature. Finally, the decision to include the feature is based on the classification performance. If 
the performance improves, the feature is retained, and the next selection round continues. Otherwise, the feature is discarded. 
CFS does not require setting parameters in experiments.

• OLSFS (Orthogonal Least Squares based Feature Selection) is a fast feature selection algorithm based on Orthogonal Least Squares 
(OLS). OLSFS uses a novel criterion called Squared Orthogonal Correlation Coefficient (SOCC) for feature ranking. The algorithm 
employs a greedy search strategy to select a subset of features iteratively. For each candidate feature, it computes the correlation 
with the class labels using the OLS method. The OLS method estimates the linear relationship between the feature and the 
class by minimizing the sum of squared residuals. This algorithm demonstrates high computational efficiency when dealing with 
large-scale datasets and high-dimensional feature spaces, and it exhibits good feature selection performance in many practical 
applications. In experiments, OLSFS does not require setting parameters.

• QLFS (Q-Learning based Feature Selection) is a dynamic feature selection algorithm based on the Q-Learning mechanism. This 
algorithm integrates feature selection and Q-Learning into a unified framework. Q-learning is utilized to construct discriminant 
functions for each class of the data. These discriminant functions aid in distinguishing between different classes of data samples 
and facilitate the ranking and selection of features. QLFS uses the Q-Learning algorithm to construct discriminant functions 
for each category. These discriminant functions are used to predict the category of each sample and obtain reward signals 
based on the prediction results. Subsequently, the feature importance of each category is considered collectively for ranking. 
During updating the discriminant function vector, feature sorting is performed, effectively selecting discriminative features and 
improving classification performance. We set the learning rate 𝛼 = 30% for QLFS in experiments.

• PMFS (Pareto Dominance based Feature Selection) is a multi-label feature selection algorithm based on Pareto dominance, 
aiming to address the feature selection problem in high-dimensional multi-label datasets. The algorithm transforms the multi-

label feature selection problem into a bi-objective optimization problem concerning the relevance and redundancy of features. It 
utilizes Pareto dominance to handle this bi-objective space. PMFS models the relevance and redundancy of features in the same 
space and evaluates them using the concept of Pareto dominance. Specifically, relevance measures the degree of association 
between a feature and all labels, while redundancy measures the similarity between a feature and other features. The PMFS 
algorithm can identify a subset of features with high relevance and low redundancy by combining relevance and redundancy. 
We set 𝜆 = 10 for PMFS in experiments, and this parameter is a weighting factor used to balance the relevance and redundancy 
of features to find the optimal feature subset.

• FSDK (Fast Sparse Discriminative K-Means) is an efficient feature selection algorithm that combines the classical Least Squares 
Regression (LSR) and Discriminative K-means (DisK-means) methods. The FSDK algorithm designs an efficient feature selection 
framework. Firstly, it introduces a weighted pseudo-label matrix with discrete characteristics to avoid trivial solutions in unsu-

pervised LSR methods. In this case, any constraints imposed on the pseudo-label matrix and selection matrix are optional, which 
is beneficial for simplifying the combinatorial optimization problem. Secondly, it introduces an 𝑙2 , 𝑝 − 𝑛𝑜𝑟𝑚 regularization term 
to enforce row sparsity in the selection matrix, where 𝑝 is a flexible parameter. Therefore, the FSDK model can be seen as a 
feature selection framework combining the DisK-means algorithm and 𝑙2, 𝑝 − 𝑛𝑜𝑟𝑚 regularization to optimize sparse regression 
problems. Additionally, the model scales linearly with the number of samples, enabling fast large-scale data processing. Exten-

sive testing on various datasets has provided strong evidence of the effectiveness and efficiency of the FSDK algorithm. We set 
𝛾 = 10, 𝑝 = 1, 𝑁𝐼𝑇𝑅𝑤 = 30, 𝑁𝐼𝑇𝑅𝑦 = 20 for FSDK in experiments.

• MRMR (Minimum Redundancy Maximum Relevance) is a classic feature selection algorithm that aims to select a subset of fea-

tures with maximum information and complementarity by maximizing the relevance between features and the target variable 
while minimizing the redundancy among features. The advantage of the MRMR method is its ability to simultaneously consider 
the relevance between features and the target variable and the redundancy among features. This allows for selecting less redun-

dant and highly relevant features, thereby improving the effectiveness of feature selection. However, the MRMR method may 
face high computational complexity when dealing with high-dimensional data, as it requires the computation of a large number 
of feature correlations. In experiments, MRMR does not require setting parameters.

• MFS-MCDM (Multi-Criteria Decision Making) is a multi-label feature selection algorithm that models the feature selection pro-
14

cess as a multi-criteria decision-making process. This method was first applied to multi-label data. It used the well-known 
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multi-criteria decision-making method, TOPSIS (Technique of Order Preference by Similarity to Ideal Solution), to evaluate the 
relationships between features and multiple labels as different criteria. The MFS-MCDM method considers multi-label feature 
selection as an information fusion process. Firstly, it utilizes the ridge regression algorithm to obtain a decision matrix and then 
calculates the weights of each column of this matrix based on the entropy of each label. Next, the TOPSIS method assigns a 
score to each feature based on the weighted decision matrix. Finally, a ranking vector of features is generated as the output to 
improve classification accuracy and reduce computational costs. Users can also choose the desired number of features. We set 
𝜆 = 10 for MFS-MCDM in experiments.

• SVM-RFE (Support Vector Machine Recursive Feature Elimination) is a feature selection method based on Support Vector 
Machines, which aims to find the optimal subset of features by recursively selecting and excluding features. SVM-RFE takes 
advantage of the SVM’s ability to model the importance of features and reduces the dimensionality of the feature space by 
gradually removing unimportant features. As a result, SVM-RFE can improve the performance of classifiers and obtain more 
interpretable and efficient feature subsets. Besides, SVM-RFE can be combined with other machine learning models and feature 
selection methods. Compared to other feature selection methods, SVM-RFE has certain advantages in handling high-dimensional 
and small sample problems, and it can provide better classification performance and feature selection stability. To improve 
computational efficiency, SVM-RFE employs the elimination percentage parameter, denoted as E, instead of eliminating features 
individually. Once the 𝑆𝑡𝑜𝑝𝑉 𝑎𝑙𝑢𝑒 is reached, the algorithm eliminates one feature at a time until all features are ranked. In this 
experiment, SVM uses a linear kernel, and the elimination percentage parameter of SVM-RFE, 𝐸, is set to 20%, the 𝑆𝑡𝑜𝑝𝑉 𝑎𝑙𝑢𝑒

and the cost parameter 𝐶 were set to 5% and 1.

4.1.4. Computational device

All experimental results are conducted on a PC with AMD Ryzen 7 5800X 8-Core Processor 3.80 GHz CPU, and 16 GB memory.

4.2. PN coefficient vs. other information measurements

This section compares the PN coefficient with other feature selection coefficients. We conduct experiments on fourteen datasets 
with four classic feature selection coefficients, including Fisher [14], PCC [11], MI [43], and S2N [26].

• Fisher: (Fisher Score) is commonly used to identify features with significant discriminative power for classification tasks. The 
algorithm is based on the Fisher criterion, which evaluates the importance of features by calculating the ratio of inter-class scatter 
to intra-class scatter. The main advantages of the Fisher feature selection algorithm are its simplicity and ease of implementation.

• PCC: (Pearson Correlation Coefficient) measures the degree of linear correlation between two variables and ranges from -1 
to 1. The advantages of PCC as a feature selection method are its simplicity and fast computation speed. It can help identify 
features highly correlated with the target variable, thereby reducing the feature space’s dimensionality and improving the 
model’s efficiency and performance.

• MI: (Mutual Information) is based on the concept of information theory and is used to measure the correlation between two 
variables. The MI feature selection method can help identify features highly correlated with the target variable from a given 
feature set, thereby improving the performance and interpretability of machine learning models. The advantages of the MI 
feature selection method are its simplicity, understandability, and high computational efficiency. It can be applied not only to 
supervised learning problems but also to unsupervised learning problems.

• S2N: (Signal-to-Noise) is a statistical measure based on the signal-to-noise ratio, aiming to identify features with significant 
signals and low noise from high-dimensional data. It utilizes two key concepts to measure the importance of each feature: signal 
and noise. The signal represents the differences in features between different classes, while the noise represents the differences 
within features. By calculating the signal-to-noise ratio, one can assess the separability of features between classes and determine 
their importance. One of the advantages of the S2N algorithm is its ability to capture differences in features between different 
classes while unaffected by within-feature variations.

We use three basic classifiers (KNN, SVM, and CART) to measure the classification results of features selected by different 
information measurements. We rank the features in each dataset and select the top ten features. The prediction accuracy, F-Measure, 
and stability performance of the PN coefficient and other feature selection coefficients are shown in Tables 3 to 5. The best results are 
highlighted in boldface on the table. The p-values obtained from the Friedman test for accuracy in KNN, SVM, and CART are 0.0005, 
4.20E-05, and 0.0007. For F-Measure, the p-values in KNN, SVM, and CART are 5.77e-04, 2.42e-05, and 1.14e-05, and the p-values 
of stability are 0.1150. Therefore, there is a significant difference between these competing algorithms regarding KNN, SVM, and 
CART. The CD (critical difference) value is 1.6311.

From Tables 3 to 5, the experimental result revealed that PNFS achieves the highest average predictive accuracy and the lowest 
average ranks among all these competing coefficients. PNFS gets the highest predictive accuracy on nine of fourteen datasets. In other 
words, the PN coefficient and PNFS have apparent advantages in the classification results in KNN, CART, and SVM classifiers. We 
also compared PNFS with other feature selection measurements regarding F-measure and stability. From the experimental results, it 
can be observed that PNFS demonstrates superior overall performance and stability in feature selection tasks.

Most traditional feature coefficients use statistical methods to measure the relationship between variables during feature selection. 
The PN coefficient combines features’ positive and negative polarities, especially the exclusion effect of negative features. Therefore, 
15

our proposed feature selection method has better accuracy and interpretability than traditional feature coefficients. PNFS can produce 
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Table 3

Comparison of PN coefficient and other information measurements on Accuracy.

Data Set
KNN SVM CART

Fisher PCC MI S2N PNFS Fisher PCC MI S2N PNFS Fisher PCC MI S2N PNFS

Arcene 0.6813 0.5886 0.6761 0.7008 0.7283 0.6750 0.5906 0.6583 0.6607 0.7283 0.6493 0.5886 0.6735 0.6794 0.7283
CNS 0.5548 0.5833 0.5976 0.4167 0.6667 0.5833 0.4167 0.6083 0.5167 0.6667 0.4167 0.6056 0.6833 0.5542 0.6667
Gisette 0.8629 0.5086 0.8579 0.8714 0.8471 0.8050 0.4936 0.8171 0.8034 0.8471 0.8529 0.4950 0.8093 0.8734 0.8471
Advertisements 0.9428 0.8157 0.9492 0.9597 0.9322 0.9386 0.8369 0.9534 0.9415 0.9322 0.9682 0.8220 0.9449 0.9563 0.9322
Leukemia 0.9286 0.9308 0.9357 0.8571 0.9429 0.7367 0.8333 0.8024 0.9028 0.9429 0.7857 0.8571 0.8857 0.8310 0.9429
Colon 0.6667 0.6881 0.7476 0.7167 0.8217 0.9125 0.7500 0.8411 0.8717 0.8217 0.7792 0.7409 0.6833 0.7167 0.8217
Prostate-std 0.9192 0.9264 0.9071 0.9322 0.9188 0.8825 0.6875 0.8271 0.8644 0.9188 0.8991 0.8569 0.8662 0.8500 0.9188
Prostate 0.8856 0.5829 0.8731 0.8929 0.8917 0.8964 0.7333 0.8667 0.8556 0.8917 0.8643 0.8650 0.8392 0.8617 0.8917
Dlbcl 0.8929 0.7253 0.9091 0.8611 0.9167 0.9067 0.8533 0.7467 0.8925 0.9167 0.8133 0.8400 0.8667 0.8267 0.9167
Leukemia-4c 0.8571 0.7857 0.6429 0.7143 0.9048 0.8143 0.7286 0.8571 0.6429 0.9048 0.8971 0.8714 0.6714 0.7143 0.9048
Srbct 0.8235 0.8659 0.9012 0.6471 0.9412 0.7059 0.8541 0.8878 0.7647 0.9412 0.8429 0.7714 0.6429 0.5714 0.9412
Lymphoma-std 0.8925 0.9063 0.9375 0.8917 0.9167 0.9042 0.9227 0.8333 0.8985 0.9167 0.7082 0.8235 0.7059 0.5294 0.9167
Lung2 0.8293 0.8049 0.8537 0.7949 0.9024 0.8293 0.8049 0.8537 0.8370 0.9024 0.9146 0.8750 0.9019 0.8667 0.9024
MLL 0.8762 0.7619 0.8286 0.7714 0.9286 0.8621 0.7286 0.9021 0.8286 0.9286 0.6429 0.7857 0.8714 0.6571 0.9286

Ave 0.8295 0.7482 0.8298 0.7877 0.8757 0.8180 0.7310 0.8182 0.8058 0.8757 0.7882 0.7713 0.7890 0.7492 0.8757
Ave Rank 3.21 3.93 2.79 3.29 1.79 2.86 4.29 2.93 3.36 1.57 3.00 3.43 3.29 3.79 1.50

Table 4

Comparison of PN coefficient and other information measurements on F-Measure.

Data Set
KNN SVM CART

Fisher PCC MI S2N PNFS Fisher PCC MI S2N PNFS Fisher PCC MI S2N PNFS

Arcene 0.6190 0.5965 0.6111 0.7059 0.7283 0.6111 0.4848 0.6316 0.6486 0.7283 0.6939 0.6047 0.7059 0.6316 0.7283
CNS 0.6154 0.4615 0.7368 0.6667 0.6667 0.4286 0.5455 0.7368 0.4615 0.6667 0.6250 0.5714 0.7368 0.5882 0.6667
Gisette 0.8507 0.7934 0.8320 0.7846 0.8471 0.7080 0.7414 0.7903 0.7692 0.8471 0.8148 0.7742 0.8308 0.8921 0.8471
Advertisements 0.9231 0.7500 0.9091 0.8889 0.9322 0.9013 0.8889 0.8571 0.8957 0.9322 0.8333 0.8363 0.8577 0.9091 0.9322
Leukemia 0.9412 0.8889 0.8235 0.9474 0.9429 0.7273 0.8235 0.8192 0.8669 0.9429 0.8924 0.9032 0.8826 0.9003 0.9429
Colon 0.8421 0.8235 0.7778 0.8235 0.8217 0.8361 0.7778 0.8721 0.8156 0.8217 0.8000 0.7692 0.7778 0.8750 0.8217
Prostate-std 0.8691 0.8378 0.8571 0.9055 0.9188 0.7368 0.8421 0.8696 0.7778 0.9188 0.7826 0.8421 0.9167 0.9204 0.9188
Prostate 0.7827 0.7273 0.7590 0.7847 0.8917 0.6886 0.8036 0.7533 0.8314 0.8917 0.6858 0.7262 0.6643 0.6927 0.8917
Dlbcl 0.7083 0.6524 0.6222 0.5046 0.9167 0.6889 0.8102 0.6852 0.6127 0.9167 0.6413 0.6889 0.6111 0.8056 0.9167
Leukemia-4c 0.8141 0.9018 0.8974 0.7479 0.9048 0.8726 0.8750 0.8166 0.6792 0.9048 0.8056 0.9221 0.8662 0.7952 0.9048
Srbct 0.8992 0.8737 0.9111 0.9064 0.9412 0.8737 0.9064 0.8992 0.9111 0.9412 0.8125 0.8737 0.9221 0.8796 0.9412
Lymphoma-std 0.8442 0.8674 0.8357 0.7491 0.9167 0.7159 0.8724 0.8637 0.8801 0.9167 0.6835 0.8170 0.7190 0.8663 0.9167
Lung2 0.7677 0.6236 0.7283 0.7802 0.9024 0.8078 0.8345 0.9028 0.7512 0.9024 0.7810 0.6436 0.7488 0.8475 0.9024
MLL 0.7857 0.9302 0.9048 0.6944 0.9286 0.8056 0.7905 0.8182 0.7488 0.9286 0.8190 0.7905 0.8182 0.7088 0.9286

Ave 0.8045 0.7663 0.8004 0.7778 0.8757 0.7430 0.7855 0.8083 0.7607 0.8757 0.7622 0.7688 0.7898 0.8080 0.8757
Ave Rank 2.86 3.79 3.50 3.21 1.50 4.00 3.36 2.93 3.43 1.29 3.86 3.71 3.36 2.71 1.36

Table 5

Comparison of PN coefficient and other information measurements on Stabil-

ity.

Data Set Fisher PCC MI S2N PNFS

Arcene 0.6697 0.4494 0.4595 0.7197 0.5874

CNS 0.1388 0.1488 0.2690 0.1588 0.3568

Gisette 0.9597 0.8692 0.9597 0.7797 0.7984

Advertisements 0.8097 0.7096 0.7163 0.7496 0.8955

Leukemia 0.5678 0.5678 0.3869 0.6194 0.8566

Colon 0.7095 0.6194 0.5472 0.6294 0.6839

Prostate-std 0.7696 0.5893 0.6895 0.5994 0.7069

Prostate 0.5660 0.2889 0.4792 0.4091 0.8144

Dlbcl 0.4793 0.5894 0.3393 0.5593 0.5952

Leukemia-4c 0.6686 0.7389 0.2389 0.1588 0.8420

Srbct 0.6291 0.7394 0.9597 0.8994 0.7822

Lymphoma-std 0.4985 0.6690 0.6695 0.5711 0.1742

Lung2 0.5195 0.7097 0.3166 0.6884 0.7350

MLL 0.4290 0.5192 0.4992 0.7995 0.5996

Ave 0.6011 0.5863 0.5379 0.5958 0.6734

Ave Rank 3.00 3.50 3.36 3.00 2.00

consistent and reliable feature selection results across different datasets and classification tasks while accurately capturing important 
features related to the target variable.

Particularly in multi-class datasets, PNFS exhibits significantly higher F-Measure values than other criteria. Traditional feature 
selection criteria often overlook the complex relationships between different classes in multi-class tasks. They can provide overall 
information about the relationship between features and the target variable, but they fail to capture subtle differences between 
different classes, resulting in information loss. On the other hand, PNFS can select positive and negative features corresponding to 
different classes, providing more accurate and reliable feature selection results, thereby significantly improving the accuracy and 
performance in multi-class tasks.

In addition, we compared the impact of different numbers of selected features on prediction accuracy across four datasets, 
ranging from 20 to 100, as shown in Fig. 5. It can be observed that PNFS achieves higher accuracy than other benchmark algorithms. 
Moreover, PNFS performs well even with the lowest number of features and tends to stabilize as the number of features increases. 
Performance improvement can generally be observed as the features increase because more relevant features are added, which helps 
16

better differentiate between different classes. However, for some competing measurements, further increasing the number of features 
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Fig. 5. Accuracy of these competing information measurements varying with different numbers of selected features.

may sometimes lead to a decline in performance. This is because the added features may contain noise or redundant information, 
causing the model to overfit the training data. However, PNFS demonstrates stable performance by utilizing the polarity of features 
for feature selection, enabling the selected features to effectively differentiate between different classes while maintaining the highest 
classification performance with both the minimum and maximum number of feature selections.

4.3. EPNC vs. state-of-the-art feature selection methods

This section compares EPNC with eight state-of-the-art feature selection methods, including CFS [48], OLSFS [46], QLFS [44], 
PMFS [21], FSDK [32], MRMR [35], MFS-MCDM [20] (abbreviated as MCDM in tables) and SVM-RFE [3]. All competing algorithms 
are implemented in Matlab. Due to the length limit of the paper, the number of selected features was consistently maintained at 10.

Tables 6 to 13 summarize the predictive accuracy, F-Measure, stability, and running time of these competing algorithms. The 
best results are highlighted in bold face in the tables. According to the Friedman test, the p-values of Accuracy in cases of KNN, 
SVM, and CART are 5.74e-11, 5.60e-09, and 1.89e-13, respectively. The p-values of F-Measure in cases of KNN, SVM, and CART are 
5.92e-09, 2.43e-06, and 1.34e-04, respectively. Therefore, there is a significant difference between these competing algorithms in 
predictive accuracy and F-Measure. Besides, the p-values of stability and running time of these competing algorithms are 3.98e-15 
and 1.77e-21. Thus, there is also a significant difference between these competing algorithms in terms of stability and running time. 
The CD (critical difference) value is 3.0056. Figs. 6–8 display the results of statistical tests among these competing algorithms.

From Tables 6 to 13 and Figs. 6–8, we can indicate that:

• EPNC 𝑣𝑠. CFS: CFS ranks and weights features based on the curvature values of each dimension in the dataset, selecting features 
with higher curvature values, which are often more correlated with the classification decision and can improve classification 
performance. In some cases, CFS may select too many features, leading to overfitting and reducing the model’s generalization 
ability. According to the statistical test, EPNC performs significantly better than CFS in accuracy and F-measure in cases of 
KNN, SVM, and CART. Besides, there is also a significant difference in stability between EPNC and CFS. Therefore, EPNC is 
significantly better than CFS in predictive accuracy and stability. In terms of running time, CFS is faster than EPNC. CFS is 
a feature selection method that evaluates the relevance of features based on feature curvature. In scenarios with high feature 
dimensions, the evaluation of feature subsets may be disrupted due to the dependence of the CFS method on data distribution 
and feature correlation. This ultimately leads CFS to poor classification performance in high-dimensional data.

• EPNC 𝑣𝑠. OLSFS: The OLSFS method exhibits fast computation speed during the greedy search process. However, when there is a 
non-linear relationship between the features and the response, the OLSFS method may not obtain the optimal subset of features. 
17

There is no significant difference between EPNC and OLSFS in predictive accuracy and F-measure. However, EPNC achieves 
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Table 6

Comparison of EPNC and Competing Methods on Accuracy Using KNN.

Data Set CFS OLSFS QLFS PMFS FSDK MRMR MCDM SVM-RFE EPNC

Arcene 0.6438 0.7056 0.6583 0.6167 0.6714 0.6563 0.7636 0.6813 0.7283

CNS 0.5238 0.5267 0.5167 0.5683 0.4167 0.5833 0.5257 0.6167 0.6667

Gisette 0.6707 0.8707 0.6458 0.7167 0.6167 0.8664 0.7083 0.8164 0.8471

Advertisements 0.8898 0.9089 0.8347 0.9068 0.8323 0.9174 0.8877 0.8157 0.9322

Leukemia 0.6786 0.8800 0.6829 0.9043 0.7857 0.8571 0.8929 0.9286 0.9429

Colon 0.6217 0.7383 0.6875 0.7292 0.8333 0.8125 0.7667 0.7333 0.8217

Prostate-std 0.7375 0.8571 0.7167 0.8667 0.7271 0.8375 0.8188 0.8781 0.9188

Prostate 0.7167 0.8357 0.7118 0.8786 0.7364 0.9250 0.8692 0.9167 0.8917

Dlbcl 0.7333 0.8587 0.7360 0.8667 0.8334 0.8083 0.7333 0.8133 0.9167

Leukemia-4c 0.7286 0.8214 0.7143 0.8661 0.8367 0.8214 0.7959 0.8571 0.9048

Srbct 0.7194 0.8824 0.6952 0.9048 0.8429 0.8667 0.7647 0.9333 0.9412

Lymphoma-std 0.8667 0.8796 0.9833 0.9524 0.8833 0.9667 0.8333 0.8889 0.9167

Lung2 0.7436 0.9024 0.7805 0.8049 0.7949 0.9268 0.8293 0.7561 0.9024

MLL 0.7143 0.8571 0.7857 0.8714 0.7143 0.9000 0.8286 0.8929 0.9286

UNSWNB15 0.9106 0.8777 0.9201 0.9251 0.9084 0.9057 0.9206 0.9016 0.9197

CICIDS2017 0.9079 0.8620 0.8594 0.8563 0.8659 0.9157 0.8712 0.9245 0.9393

Ave 0.7379 0.8290 0.7456 0.8272 0.7687 0.8479 0.8006 0.8347 0.8824

Ave Rank 7.38 4.63 7.13 4.25 6.25 3.81 5.38 4.19 1.81

Table 7

Comparison of EPNC and Competing Methods on Accuracy Using SVM.

Data Set CFS OLSFS QLFS PMFS FSDK MRMR MCDM SVM-RFE EPNC

Arcene 0.6219 0.6361 0.6583 0.7313 0.6438 0.7063 0.7194 0.6917 0.7283

CNS 0.5667 0.5833 0.5972 0.5714 0.5278 0.5417 0.5833 0.6389 0.6667

Gisette 0.6136 0.8743 0.5636 0.5014 0.5214 0.8621 0.5021 0.8286 0.8471

Advertisements 0.8432 0.9343 0.8538 0.9237 0.8875 0.9513 0.9089 0.8301 0.9322

Leukemia 0.7286 0.9029 0.7357 0.9314 0.9286 0.8571 0.7857 0.9286 0.9429

Colon 0.6817 0.8167 0.8125 0.7983 0.8333 0.8205 0.7639 0.7833 0.8217

Prostate-std 0.7625 0.8667 0.7214 0.8452 0.8071 0.8563 0.8875 0.8167 0.9188

Prostate 0.8125 0.8857 0.7107 0.8667 0.7094 0.9167 0.8571 0.9357 0.8917

Dlbcl 0.7867 0.9067 0.8533 0.8800 0.7667 0.8334 0.8667 0.8833 0.9167

Leukemia-4c 0.7381 0.7571 0.7273 0.8117 0.7143 0.8429 0.6905 0.7041 0.9048

Srbct 0.7245 0.8690 0.7083 0.9043 0.7114 0.9278 0.8204 0.8824 0.9412

Lymphoma-std 0.9038 0.9643 0.9306 0.9667 0.8667 0.9063 0.8333 0.8958 0.9167

Lung2 0.7729 0.9268 0.7561 0.7726 0.8049 0.8522 0.7729 0.8205 0.9024

MLL 0.6429 0.8143 0.6714 0.9000 0.7143 0.8714 0.8571 0.7857 0.9286

UNSWNB15 0.7116 0.6900 0.8475 0.8858 0.8294 0.5293 0.9052 0.7053 0.9197

CICIDS2017 0.7332 0.6961 0.7485 0.7707 0.5707 0.5362 0.5511 0.4817 0.9393

Ave 0.7278 0.8203 0.7435 0.8163 0.7398 0.8007 0.7691 0.7883 0.8824

Ave Rank 7.13 3.94 6.25 4.00 6.50 4.31 5.69 5.38 1.75

Table 8

Comparison of EPNC and Competing Methods on Accuracy Using CART.

Data Set CFS OLSFS QLFS PMFS FSDK MRMR MCDM SVM-RFE EPNC

Arcene 0.6438 0.7828 0.6792 0.7063 0.6125 0.7107 0.7136 0.6984 0.7283

CNS 0.5200 0.5267 0.5150 0.5683 0.5417 0.5278 0.6205 0.5833 0.6667

Gisette 0.6521 0.8764 0.6028 0.5014 0.5144 0.8786 0.8791 0.8204 0.8471

Advertisements 0.6438 0.9513 0.8496 0.9089 0.9492 0.9619 0.8981 0.9131 0.9322

Leukemia 0.7143 0.8857 0.7381 0.9043 0.7619 0.8571 0.9214 0.9286 0.9429

Colon 0.8056 0.7708 0.7917 0.8542 0.7167 0.8333 0.7813 0.8125 0.8217

Prostate-std 0.8125 0.8610 0.7156 0.8929 0.7865 0.8962 0.8857 0.8083 0.9188

Prostate 0.7042 0.8340 0.6833 0.8875 0.7079 0.8525 0.8167 0.9083 0.8917

Dlbcl 0.8104 0.8256 0.8476 0.8667 0.8056 0.7333 0.8741 0.8133 0.9167

Leukemia-4c 0.7245 0.7857 0.6429 0.8571 0.7143 0.8143 0.8714 0.7143 0.9048

Srbct 0.6471 0.7851 0.7286 0.8290 0.8367 0.7616 0.8235 0.8824 0.9412

Lymphoma-std 0.8167 0.8333 0.8667 0.8833 0.7667 0.9000 0.8796 0.8958 0.9167

Lung2 0.6892 0.7533 0.8073 0.7780 0.7829 0.7870 0.7575 0.8780 0.9024

MLL 0.6714 0.7714 0.6571 0.7429 0.7857 0.8143 0.7429 0.8571 0.9286

UNSWNB15 0.9156 0.9237 0.9174 0.9215 0.9170 0.9228 0.9323 0.9504 0.9197

CICIDS2017 0.9074 0.9192 0.9205 0.9236 0.9227 0.9314 0.9210 0.9301 0.9393

Ave 0.7299 0.8179 0.7477 0.8141 0.7576 0.8239 0.8324 0.8372 0.8824
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Ave Rank 7.75 5.19 7.25 4.38 6.56 3.88 4.25 3.75 1.94
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Table 9

Comparison of EPNC and Competing Methods on F-Measure Using KNN.

Data Set CFS OLSFS QLFS PMFS FSDK MRMR MCDM SVM-RFE EPNC

Arcene 0.7027 0.6857 0.6061 0.6897 0.6842 0.6486 0.6667 0.7568 0.7027

CNS 0.7143 0.6667 0.7500 0.7778 0.8421 0.7368 0.6250 0.8235 0.8571

Gisette 0.5824 0.8762 0.4928 0.6695 0.6657 0.8739 0.6571 0.8055 0.8374

Advertisements 0.5973 0.7650 0.6217 0.6577 0.7417 0.7937 0.6557 0.5899 0.7838

Leukemia 0.8000 0.7273 0.6667 0.9091 0.8571 0.8966 0.8333 0.7500 0.9231

Colon 0.8235 0.8750 0.7778 0.7500 0.8421 0.7692 0.8000 0.8333 0.8571

Prostate-std 0.7500 0.8000 0.7368 0.8333 0.7604 0.8421 0.8182 0.6154 0.7692

Prostate 0.7368 0.7500 0.6667 0.9167 0.7692 0.7273 0.9091 0.7778 0.9474

Dlbcl 0.5000 0.8571 0.5714 0.8000 0.7500 0.6667 0.5839 0.7273 0.8889

Leukemia-4c 0.6746 0.7500 0.6523 0.9158 0.8730 0.8857 0.7491 0.8042 0.8926

Srbct 0.7557 0.9286 0.6131 0.9020 0.6224 0.9495 0.8590 0.9273 0.9580

Lymphoma-std 0.9111 0.8992 0.8333 0.9580 0.8286 0.9161 0.8454 0.8095 0.9137

Lung2 0.7010 0.8475 0.7634 0.7218 0.7452 0.8373 0.8603 0.9093 0.9529

MLL 0.7833 0.9153 0.7579 0.9394 0.7313 0.9153 0.8593 0.8102 0.9327

UNSWNB15 0.7626 0.7550 0.7787 0.7741 0.7860 0.7636 0.7358 0.7585 0.8147

CICIDS2017 0.6605 0.5159 0.5850 0.6487 0.6140 0.6918 0.5882 0.6932 0.7149

Ave 0.7160 0.7884 0.6796 0.8040 0.7571 0.8071 0.7529 0.7745 0.8591

Ave Rank 6.50 4.75 7.56 3.81 5.25 4.13 6.00 5.06 1.81

Table 10

Comparison of EPNC and Competing Methods on F-Measure Using SVM.

Data Set CFS OLSFS QLFS PMFS FSDK MRMR MCDM SVM-RFE EPNC

Arcene 0.6667 0.8095 0.5294 0.5946 0.5789 0.6842 0.6111 0.5882 0.7027

CNS 0.7368 0.7778 0.8000 0.7059 0.8421 0.7500 0.7143 0.8235 0.8571

Gisette 0.7096 0.8594 0.6957 0.6577 0.6574 0.8539 0.6571 0.7797 0.8374

Advertisements 0.2887 0.7626 0.4771 0.7246 0.5310 0.7887 0.6557 0.3529 0.7838

Leukemia 0.8333 0.8571 0.7273 0.8571 0.6000 0.9091 0.8000 0.8889 0.9231

Colon 0.7778 0.7143 0.8750 0.8333 0.8235 0.7692 0.9333 0.8421 0.8571

Prostate-std 0.7368 0.8889 0.5833 0.8000 0.7826 0.8148 0.8696 0.7778 0.7692

Prostate 0.8182 0.8696 0.6667 0.9167 0.6957 0.9524 0.9000 0.9333 0.9474

Dlbcl 0.5455 0.6667 0.8333 0.7692 0.8571 0.5714 0.8000 0.7639 0.8889

Leukemia-4c 0.5945 0.8857 0.6852 0.7869 0.7270 0.9302 0.6709 0.5789 0.8926

Srbct 0.5833 0.9495 0.7741 0.9167 0.8580 0.8497 0.8951 0.9416 0.9580

Lymphoma-std 0.7483 0.9161 0.8125 0.9111 0.7483 0.8737 0.7778 0.9161 0.9137

Lung2 0.8097 0.7712 0.7569 0.5524 0.7931 0.8578 0.7087 0.8966 0.9529

MLL 0.7231 0.8857 0.7852 0.8593 0.7238 0.9153 0.8598 0.9030 0.9327

UNSWNB15 0.4998 0.3598 0.7183 0.6348 0.6989 0.4784 0.7066 0.5298 0.8147

CICIDS2017 0.6515 0.5673 0.5879 0.6487 0.6230 0.7199 0.6230 0.6977 0.7149

Ave 0.6702 0.7838 0.7067 0.7606 0.7213 0.7949 0.7614 0.7634 0.8591

Ave Rank 6.94 4.44 6.31 5.31 6.00 3.81 5.44 4.44 2.06

Table 11

Comparison of EPNC and Competing Methods on F-Measure Using CART.

Data Set CFS OLSFS QLFS PMFS FSDK MRMR MCDM SVM-RFE EPNC

Arcene 0.7429 0.6452 0.5455 0.5854 0.5882 0.5882 0.6875 0.6471 0.7027

CNS 0.6250 0.5714 0.7778 0.7059 0.7368 0.7143 0.7500 0.8000 0.8571

Gisette 0.6819 0.8792 0.6749 0.6577 0.6532 0.8832 0.6577 0.8254 0.8374

Advertisements 0.2979 0.7500 0.4571 0.7246 0.7534 0.8142 0.6557 0.6800 0.7838

Leukemia 0.8333 0.9091 0.7500 0.8889 0.7692 0.8000 0.8889 0.8571 0.9231

Colon 0.7143 0.7778 0.8750 0.9333 0.8000 0.8235 0.8421 0.8889 0.8571

Prostate-std 0.8182 0.8462 0.8148 0.8696 0.7273 0.9231 0.8800 0.8868 0.7692

Prostate 0.7826 0.8696 0.6316 0.9412 0.8148 0.8333 0.9231 0.9167 0.9474

Dlbcl 0.5714 0.8571 0.7273 0.9091 0.6667 0.7500 0.8000 0.6667 0.8889

Leukemia-4c 0.6963 0.8750 0.7269 0.8693 0.8519 0.8857 0.8296 0.7661 0.8926

Srbct 0.5262 0.8958 0.6577 0.9020 0.6433 0.8856 0.8643 0.8910 0.9580

Lymphoma-std 0.8992 0.8125 0.9111 0.8286 0.8095 0.9161 0.7333 0.8125 0.9137

Lung2 0.6954 0.6447 0.8726 0.6895 0.7021 0.6212 0.8235 0.9311 0.9529

MLL 0.7482 0.6540 0.6996 0.8278 0.8857 0.8750 0.7852 0.9407 0.9327

UNSWNB15 0.8208 0.8157 0.8014 0.8137 0.8168 0.8137 0.7973 0.8077 0.8147

CICIDS2017 0.6684 0.6037 0.6583 0.7151 0.6394 0.6485 0.7143 0.7038 0.7149

Ave 0.6951 0.7754 0.7239 0.8039 0.7411 0.7985 0.7895 0.8139 0.8591
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Ave Rank 6.38 5.25 6.44 4.25 6.25 4.50 5.13 4.19 2.31
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Fig. 6. Statistical test for EPNC and competing algorithms on Accuracy.

Table 12

Comparison of EPNC and Competing Methods on Stability.

Data Set CFS OLSFS QLFS PMFS FSDK MRMR MCDM SVM-RFE EPNC

Arcene 0.2891 0.2993 0.4194 0.5295 0.2190 0.2392 0.5996 0.3493 0.5874

CNS 0.1787 0.0387 0.3491 0.4392 0.1188 0.1588 0.4793 0.2289 0.3568

Gisette 0.6894 0.6493 0.3287 0.3587 0.2281 0.8196 0.5270 0.6293 0.7984

Advertisements 0.8188 0.7584 0.2854 0.4968 0.5672 0.9195 0.5270 0.5169 0.8955

Leukemia 0.3687 0.2887 0.3291 0.6896 0.1086 0.3691 0.5293 0.5293 0.8566

Colon 0.1156 0.2060 0.3769 0.4774 0.2050 0.4271 0.4774 0.4673 0.6839

Prostate-std 0.1085 0.2187 0.3189 0.5493 0.1084 0.3890 0.6294 0.5493 0.7069

Prostate 0.1185 0.2087 0.3589 0.5893 0.1284 0.5492 0.6895 0.5693 0.8144

Dlbcl 0.1086 0.2488 0.4391 0.4992 0.1084 0.3790 0.5393 0.5293 0.5952

Leukemia-4c 0.1188 0.1388 0.5726 0.6695 0.1488 0.5594 0.8583 0.5293 0.8420

Srbct 0.1463 0.3371 0.3920 0.8594 0.4577 0.6485 0.7087 0.7288 0.7822

Lymphoma-std 0.0577 0.1178 0.4748 0.4687 0.0075 0.1880 0.4687 0.4787 0.1742

Lung2 0.0973 0.2477 0.4835 0.8365 0.0271 0.3179 0.3581 0.3781 0.7350

MLL 0.0584 0.2086 0.5595 0.6093 0.0017 0.4891 0.6694 0.6193 0.5996

UNSWNB15 0.7362 0.7343 0.7048 0.5276 0.3652 0.8524 0.5837 0.4686 0.9410

CICIDS2017 0.3232 0.8853 0.2888 0.6457 0.3948 0.9312 0.9008 0.5871 0.8524

Ave 0.2709 0.3491 0.4176 0.5779 0.1997 0.5148 0.5966 0.5099 0.7013

Ave Rank 7.00 6.44 5.63 3.56 8.13 4.56 2.94 4.31 2.19

higher accuracy on average and outperforms OLSFS on most datasets. In terms of stability, EPNC is significantly better than 
OLSFS. Among these competing algorithms, OLSFS gets the shortest running time. OLSFS is a fast feature selection algorithm 
based on orthogonal least squares and considers both the correlation between features and global information in the feature 
selection process. However, OLSFS does not handle well for non-linear models and can not capture the importance of non-linear 
features that could cause the loss of vital data and information, resulting in reduced predictive accuracy.

• EPNC 𝑣𝑠. QLFS: QLFS is an incremental, task-oriented, and model-free learning algorithm. It can gradually learn and update 
the feature selection model to adapt to data changes and new learning tasks. However, due to the need to construct and update 
discriminant function vectors, QLFS may have higher computational and storage requirements for large-scale datasets, which 
20

can lead to a decrease in algorithm efficiency. The experimental data shows that EPNC performs significantly better than QLFS 
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Fig. 7. Statistical test for EPNC and competing algorithms on F-Measure.

Table 13

Running time(seconds).

Data Set CFS OLSFS QLFS PMFS FSDK MRMR MCDM SVM-RFE EPNC

Arcene 3.1991 0.0557 0.2174 380.3341 72.5020 3.2847 259.6121 19.6646 8.8122

CNS 0.7270 0.0098 0.0312 133.3603 9.1745 2.0296 90.7762 6.2561 2.8688

Gisette 54.7282 1.1866 2.8295 45.8220 41.3927 3.9780 31.9137 650.1322 756.0843

Advertisements 5.7140 0.0728 0.2279 0.9334 1.5175 0.5380 0.5100 1.4626 32.3867

Leukemia 0.8889 0.0121 0.0433 133.5603 63.8723 2.1126 91.1412 0.0906 3.1572

Colon 0.2104 0.0038 0.0077 1.8874 3.5180 0.5488 0.8641 0.0531 0.8150

Prostate-std 1.0838 0.0135 0.0473 77.7318 65.8804 1.7514 52.2600 0.1097 3.3049

Prostate 1.0564 0.0131 0.0445 75.0917 69.9917 1.7162 50.5239 0.1062 3.2288

Dlbcl 0.8314 0.0113 0.0411 89.2834 54.2020 1.8363 59.2470 0.0805 2.8713

Leukemia-4c 1.0053 0.0143 0.0840 122.7899 11.2786 2.5452 82.6397 22.9050 5.6391

Srbct 0.3751 0.0062 0.0205 2.8647 5.4243 0.7640 1.5120 0.2077 1.9503

Lymphoma-std 0.4930 0.0078 0.0248 19.7749 18.7764 1.3789 12.8665 0.0910 2.2110

Lung2 1.3240 0.0160 0.1176 10.2625 11.9371 1.1414 6.1958 0.3820 7.1372

MLL 0.8365 0.0117 0.0748 67.5032 50.2558 2.0564 44.6546 0.2163 3.3937

UNSWNB15 0.4824 0.0095 0.4215 0.0092 6.0425 0.0205 0.0038 1887.1152 19.3163

CICIDS2017 1.2502 0.0232 0.5414 0.0041 6.1710 0.0572 0.0108 3809.0477 72.9354

Ave 4.6379 0.0917 0.2984 72.5758 30.7460 1.6100 49.0457 399.8700 57.8820

Ave Rank 4.56 1.25 2.38 7.50 7.44 4.44 6.00 4.88 6.56

on accuracy and F-measure in KNN, SVM, and CART cases. On average, EPNC is much more stable than QLFS. QLFS is much 
faster than EPNC in terms of running time. QLFS focuses on preserving local information and comparing features in smaller 
subsets. In some cases, QLFS may not capture global information effectively.

• EPNC 𝑣𝑠. PMFS: The PMFS method models the correlation and redundancy of features in the same space and evaluates them 
separately using the concept of Pareto dominance and clustering methods. This comprehensive consideration helps select feature 
subsets that have both relevance and low redundancy, improving the effectiveness of feature selection. However, the performance 
of the Pareto dominance algorithm may decline when the number of objectives increases. Although the PMFS method performs 
well in handling two objectives, it may have limitations when dealing with problems with a larger number of objectives. The 
21

experimental results show no significant difference between EPNC and PMFS on predictive accuracy and F-measure. However, 
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Fig. 8. Statistical test for EPNC and competing algorithms on Stability and Running Time.

EPNC gets higher predictive accuracy than PMFS on most datasets in KNN, SVM, and CART cases. Meanwhile, EPNS is more 
stable than PMFS. In terms of running time, EPNS and PMFS perform similarly. PMFS is a filter-based feature selection method 
that uses a bi-objective measure to solve multi-objective optimization problems. On most datasets, PMFS spends more running 
time than EPNC. PMFS involves comparing numerous solutions to obtain results in multi-objective optimization, leading to 
increased time complexity when dealing with high-dimensional datasets.

• EPNC 𝑣𝑠. FSDK: The FSDK method exhibits efficiency and flexibility in handling large-scale high-dimensional data for feature 
selection. However, although the method introduces a weighted pseudo-label matrix to mitigate trivial solutions in unsupervised 
LSR, the continuous pseudo-label matrix obtained from spectral analysis deviates somewhat from the actual circumstances. 
According to the statistical test, EPNC performs significantly better than FSDK in predictive Accuracy, F-measure, and stability 
cases. Regarding running time, FSDK spends more time than EPNC on most datasets. FSDK is an unsupervised feature selection 
method based on parse discriminative K-means. Since accurate label information is not used, the performance of FSDK is not as 
good as that of the supervised feature selection algorithms among these competing algorithms.

• EPNC 𝑣𝑠. MRMR: MRMR method offers the advantages of maximizing relevance and minimizing redundancy, resulting in 
selecting a subset of highly predictive and independent features. However, it comes with a high sensitivity to data distribution 
and the assumption of a single target variable. There is no significant difference between EPNC and MRMR in predictive accuracy, 
F-measure, and stability. EPNC achieves higher average accuracy and lower average ranks than MRMR. Meanwhile, MRMR 
consumes much less running time than EPNC. MRMR is a classical Mutual Information-based feature selection method that aims 
to maximize the relevance between features and the target variable while minimizing the redundancy among features. MRMR is 
an excellent feature selection algorithm but cannot handle continuous datasets directly.

• EPNC 𝑣𝑠. MFS-MCDM: MFS-MCDM models the feature selection problem as a multi-criteria decision-making process. This ap-

proach allows for considering the relationships between multiple labels and provides a more comprehensive evaluation of the 
correlation between features and labels. It performs well in multi-label feature selection tasks. However, it involves high compu-

tational complexity. The algorithm’s computational cost can be significant when dealing with large-scale datasets. On predictive 
accuracy, EPNC outperformed MFS-MCDM significantly in the case of SVM. Regarding F-measure, EPNC significantly performs 
better than MFS-MCDM in the case of KNN. In other cases, EPNC gets much higher performance on average than MFS-MCDM. 
MFS-MCDM and EPNC perform similarly in terms of stability and running time. MFS-MCDM is a multi-label feature selection 
method that utilizes an information fusion approach to integrate evaluations from different labels. Like MFS-MCDM, EPNC can 
also handle multi-label feature selection tasks by selecting positive and negative features for each class. With the help of the 
ensemble mechanism, EPNC achieves superior performance.

• EPNC 𝑣𝑠. SVM-RFE: SVM-RFE utilizes Support Vector Machine models, known for their excellent performance in handling 
high-dimensional data and nonlinear problems, making them effective for feature selection. By recursively eliminating features, 
SVM-RFE removes features with minimal impact on the model in each iteration. This recursive process helps identify the most 
influential subset of features that significantly affect the model’s performance and demonstrates good performance on different 
datasets. According to the statistical test, there is no significant difference between EPNC and SVM-RFE regarding predictive 
accuracy and F-measure. Regarding average accuracy and F-measure, EPNC is more than 5% higher than SVM-RFE at least. 
On stability, EPNC is more than 20% higher than SVM-RFE on average. Regarding running time, SVM-RFE spends much more 
time on average than EPNC. On datasets UNSWNB15 and CICIDS2017, SVM-RFE’s execution time far exceeds EPNC’s. SVM-RFE 
requires retraining the support vector machine model in each iteration, significantly impacting the overall running time.

In sum, by using both positive and negative features, EPNC trains multiple classifiers for each dataset and achieves the best 
performance in predictive accuracy and stability among these competing algorithms. Just like a coin with both sides. EPNC spends 
much more running time than most of these competing algorithms.

Moreover, Table 14 compares the time complexity of these competing feature selection methods. In the table, the symbol 𝑛
represents the total number of instances, 𝑚 represents the number of features in the original feature set, 𝑘 represents the size of 
22

selected features, and 𝐹 represents the number of iterations required.
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Table 14

Time complexity of these competing algorithms.

Method Type Computational Complexity

EPNC Ensemble, Supervised 𝑂(𝑛 ∗ |𝐶| ∗ Ω+ |𝑛 ∗𝑚|2)
CFS Filter, Unsupervised 𝑂(𝑛𝑚+ 𝑘𝑙𝑜𝑔𝑘)
OLSFS Filter, Supervised 𝑂(𝑚3)
QLFS Filter, Supervised 𝑂(𝑛 ∗𝑚)
PMFS Filter, Unsupervised 𝑂(𝑛2𝑚2)
FSDK Embedded,Unsupervised 𝑂(𝑛𝑚𝐹 )
MRMR Filter, Univariate 𝑂(𝑛𝑚 ∗ 𝑘+𝑚2)
MCDM Filter, Univariate 𝑂(𝑛3 +𝑚𝑛+𝑚𝑛2)
SVM-RFE Wrapper, Supervised 𝑂(𝐹 ∗ 𝑛2𝑚)

Fig. 9. Accuracy of these competing algorithms varying with different numbers of selected features.

4.4. Performance with different numbers of selected features

To test the impact of different numbers of selected features on our new framework, we conducted experiments with competing 
algorithms on four datasets with different feature numbers (from 20 to 100). Figs. 9 to 11 displays the experimental findings on 
various datasets with different numbers of features in cases of accuracy, F-measure and stability.

From Figs. 9 to 11, we can observe that:

• Accuracy: With the increase of selected features, EPNC outperforms other feature selection algorithms in predictive accuracy 
in most cases. Meanwhile, EPNC is stable under different numbers of features. In contrast, the predictive accuracy of the com-

parative algorithms is significantly affected by the increase in selected feature numbers. For example, when the feature number 
increases to 60 on dataset Colon, the performance of these competing algorithms drops while EPNC has some improvements.

• F-Measure: In terms of F-measure, EPNC always gets the highest performance among these competing algorithms, varying 
with different numbers of features. The experimental results revealed that our method outperformed other feature selection 
techniques, consistently achieving higher F-measure values. This signifies the robustness and effectiveness of our approach 
in accurately identifying relevant features and optimizing performance. These findings further validate the superiority of our 
method in handling feature variations and highlight the importance of our feature selection strategy.

• Stability: Regarding stability, EPNC consistently outperforms competing algorithms with the increase of selected features. For 
instance, on datasets Leukemia, Colon, and Lung2, when the feature number increases to 40, the stability of all these competing 
23

algorithms drops while EPNC is very stable and has slight improvements. The selected feature subsets were consistently similar 
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Fig. 10. F-Measure of these competing algorithms varying with different numbers of selected features.
24

Fig. 11. Stability of these competing algorithms varying with different numbers of selected features.
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across different subsets of the dataset, indicating that our method was robust to selected feature variations and could adapt to 
different scenarios. This stability is crucial for ensuring the reliability and reproducibility of the feature selection process.

In sum, ENPC is robust and stable compared to these competing algorithms, varying with different numbers of selected features.

5. Discussion

This paper proposes an interpretable feature selection method based on feature polarity and improves classification performance 
through an ensemble learning framework. Through experimental validation, we demonstrate the effectiveness of the PN coefficient 
and our classification framework. The following is a summary and discussion of the usefulness of both positive and negative features, 
the proposed method’s generalization ability, advantages, disadvantages, and interpretability.

• Usefulness of both positive and negative features: Positive and negative features have different effects on the performance of the 
classification task. Positive features contribute positively to the prediction outcome of a specific label, while negative features 
negate the prediction outcome of a specific label. We train multiple classifiers for the selected positive and negative features for 
each class in the dataset. A classification model can more accurately identify and classify instances with specific features using 
positive features. On the other hand, negative features help exclude instances that do not possess specific features, reducing 
the false positive rate of the classifier. The complementary nature of positive and negative features significantly improves the 
accuracy and efficiency of classification. In extensive experiments conducted in this study, the proposed method demonstrated 
excellent performance, validating the effectiveness of positive and negative features.

• Advantages and disadvantages: In the experiments, PNFS and EPNC achieved the lowest average rankings among all these 
competing algorithms in accuracy, F-measure, and stability, demonstrating excellent performance. Additionally, PNFS is a 
parameter-free feature selection method that can automatically adjust the positive-negative ratio of selected features, providing 
good flexibility and adaptability. Meanwhile, using an ensemble learning mechanism, EPNC combines feature polarity and mul-

tiple classifiers while improving classification performance and stability. However, PNFS has some limitations in terms of time 
complexity. PNFS selects positive and negative features for each class, which can be time-consuming for datasets with many 
class labels. Additionally, EPNC integrates multiple classifiers, resulting in longer classification times.

• Generalization ability: Based on the Kendall coefficient, the PN coefficient can handle both discrete and continuous features, 
while most existing information measurements are designed to deal with a single feature type. This makes our new approach 
applicable to the feature selection requirements of different practical application scenarios. Besides, our new ensemble classifi-

cation framework trains multiple classifiers regarding the selected positive and negative features for each class in the dataset. 
Based on the superiority of ensemble learning, our new classification framework can achieve stable and superior performance 
on different datasets. Extensive experiments conducted on real-world datasets validate the generalization ability of our new 
method.

• Interpretability: The use of positive and negative features enhances the interpretability of the model. By observing and analyzing 
the impact of positive and negative features, we can understand the basis and decision-making process of the model’s predictions. 
For example, in medical diagnosis, positive features can help doctors determine whether a patient has a specific disease, while 
negative features can help exclude the possibility of a particular disease. By understanding the importance and polarity of 
features to the model, we can better comprehend its prediction outcomes and evaluate its credibility and applicability. This is of 
significant importance in fields such as medical decision-making, financial forecasting, and security detection.

6. Conclusion

In this article, we tackle the feature selection problem by proposing an interpretable method from the perspective of feature 
polarity. We present the formal definition of positive and negative features and define the PN coefficient to calculate the feature 
polarity. Meanwhile, we can adaptively obtain the proportion of positive and negative features for different datasets. Based on these, 
we propose a new feature selection method regarding explainability of features. Moreover, we design a novel ensemble classification 
framework from both positive and negative perspectives. Extensive experiments illustrate that our new feature selection method 
and ensemble classification framework are effective compared to traditional feature selection coefficients and state-of-the-art feature 
selection methods.

Indeed, our new method also has some limitations, such as the high time complexity. In future work, we will focus on the 
theoretical analysis of the proposed method and the relationship between positive and negative feature subsets. Besides, in some 
real-world applications, the dataset is not static and may exist in stream mode. We will apply feature polarity to online streaming 
feature selection issues.
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